Maximum Kernel Density Estimator for robust fitting

被引:0
|
作者
Wang, Hanzi [1 ]
机构
[1] Johns Hopkins Univ, Dept Comp Sci, Ctr Comp Integrated Surg Syst & Technol, Baltimore, MD 21218 USA
关键词
machine vision; robustness; model fitting; kernel density estimation; algorithms;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Robust model fitting plays an important role in many computer vision applications. In this paper, we propose a new robust estimator - Maximum Kernel Density Estimator (MKDE) based on the nonparametric kernel density estimation technique. It can be viewed as an improved version of our previously proposed Quick Maximum Density Power Estimator (QMDPE) [15]. Compared with QMDPE, MKDE does not require running the mean shift algorithm for each candidate fit. Thus, the computational complexity of MKDE is greatly reduced while the accuracy of MKDE is comparable to QMDPE and outperforms that of other popular robust estimators such as LMedS and RANSAC. We evaluate MKDE in robust line fitting and fundamental matrix estimation. Experiments show that MKDE has achieved promising results.
引用
收藏
页码:3385 / 3388
页数:4
相关论文
共 50 条
  • [31] Presmoothed kernel density estimator for censored data
    Cao, R
    Jácome, MA
    JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) : 289 - 309
  • [32] Online Geovisualization with Fast Kernel Density Estimator
    Hotta, Hajime
    Hagiwara, Masafumi
    2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, 2009, : 622 - 625
  • [33] Asymptotic Analysis of the Jittering Kernel Density Estimator
    Nagler T.
    Mathematical Methods of Statistics, 2018, 27 (1) : 32 - 46
  • [34] ADAPTING THE CLASSICAL KERNEL DENSITY ESTIMATOR TO DATA
    ABDOUS, B
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1990, 9 (02) : 169 - 178
  • [35] Importance Sampling Based on the Kernel Density Estimator
    Zhang, XueGao
    PROCEEDINGS OF THE 2013 CONFERENCE ON EDUCATION TECHNOLOGY AND MANAGEMENT SCIENCE (ICETMS 2013), 2013, : 206 - 208
  • [36] Robust kernel density estimation
    Kim, JooSeuk
    Scott, Clayton
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3381 - 3384
  • [37] Robust Kernel Density Estimation
    Kim, JooSeuk
    Scott, Clayton D.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 2529 - 2565
  • [38] Efficient Algorithms for Maximum Consensus Robust Fitting
    Wen, Fei
    Ying, Rendong
    Gong, Zheng
    Liu, Peilin
    IEEE TRANSACTIONS ON ROBOTICS, 2020, 36 (01) : 92 - 106
  • [39] A Generalized Kernel Consensus-Based Robust Estimator
    Wang, Hanzi
    Mirota, Daniel
    Hager, Gregory D.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (01) : 178 - 184
  • [40] Robust maximum entropy test for GARCH models based on a minimum density power divergence estimator
    Kim, Byungsoo
    ECONOMICS LETTERS, 2018, 162 : 93 - 97