Robust Kernel Density Estimation

被引:0
|
作者
Kim, JooSeuk [1 ]
Scott, Clayton D. [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
outlier; reproducing kernel Hilbert space; kernel trick; influence function; M-estimation; REGRESSION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a method for nonparametric density estimation that exhibits robustness to contamination of the training sample. This method achieves robustness by combining a traditional kernel density estimator (KDE) with ideas from classical M-estimation. We interpret the KDE based on a positive semi-definite kernel as a sample mean in the associated reproducing kernel Hilbert space. Since the sample mean is sensitive to outliers, we estimate it robustly via M-estimation, yielding a robust kernel density estimator (RKDE). An RKDE can be computed efficiently via a kernelized iteratively re-weighted least squares (IRWLS) algorithm. Necessary and sufficient conditions are given for kernelized IRWLS to converge to the global minimizer of the M-estimator objective function. The robustness of the RKDE is demonstrated with a representer theorem, the influence function, and experimental results for density estimation and anomaly detection.
引用
收藏
页码:2529 / 2565
页数:37
相关论文
共 50 条
  • [1] Robust kernel density estimation
    Kim, JooSeuk
    Scott, Clayton
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3381 - 3384
  • [2] Robust kernels for kernel density estimation
    Wang, Shaoping
    Li, Ang
    Wen, Kuangyu
    Wu, Ximing
    [J]. ECONOMICS LETTERS, 2020, 191
  • [3] Robust Background Modeling with Kernel Density Estimation
    Hua, Man
    Li, Yanling
    Luo, Yinhui
    [J]. INTERNATIONAL JOURNAL OF ONLINE ENGINEERING, 2015, 11 (08) : 13 - 16
  • [4] Designing Robust Transformers using Robust Kernel Density Estimation
    Han, Xing
    Ren, Tongzheng
    Tan Minh Nguyen
    Khai Nguyen
    Ghosh, Joydeep
    Nhat Ho
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [5] Robust computer vision through kernel density estimation
    Chen, HF
    Meer, P
    [J]. COMPUTER VISON - ECCV 2002, PT 1, 2002, 2350 : 236 - 250
  • [6] Robust sparse kernel density estimation by inducing randomness
    Chen, Fei
    Yu, Huimin
    Yao, Jincao
    Hu, Roland
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 367 - 375
  • [7] Robust sparse kernel density estimation by inducing randomness
    Fei Chen
    Huimin Yu
    Jincao Yao
    Roland Hu
    [J]. Pattern Analysis and Applications, 2015, 18 : 367 - 375
  • [8] Robust normal reference bandwidth for kernel density estimation
    Zhang, Jin
    Wang, Xueren
    [J]. STATISTICA NEERLANDICA, 2009, 63 (01) : 13 - 23
  • [9] Robust Kernel Density Estimation with Median-of-Means principle
    Humbert, Pierre
    Le Bars, Batiste
    Minvielle, Ludovic
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [10] Robust Kernel Density Estimation by Scaling and Projection in Hilbert Space
    Vandermeulen, Robert A.
    Scott, Clayton D.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27