Robust Kernel Density Estimation

被引:0
|
作者
Kim, JooSeuk [1 ]
Scott, Clayton D. [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
outlier; reproducing kernel Hilbert space; kernel trick; influence function; M-estimation; REGRESSION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a method for nonparametric density estimation that exhibits robustness to contamination of the training sample. This method achieves robustness by combining a traditional kernel density estimator (KDE) with ideas from classical M-estimation. We interpret the KDE based on a positive semi-definite kernel as a sample mean in the associated reproducing kernel Hilbert space. Since the sample mean is sensitive to outliers, we estimate it robustly via M-estimation, yielding a robust kernel density estimator (RKDE). An RKDE can be computed efficiently via a kernelized iteratively re-weighted least squares (IRWLS) algorithm. Necessary and sufficient conditions are given for kernelized IRWLS to converge to the global minimizer of the M-estimator objective function. The robustness of the RKDE is demonstrated with a representer theorem, the influence function, and experimental results for density estimation and anomaly detection.
引用
收藏
页码:2529 / 2565
页数:37
相关论文
共 50 条
  • [21] KERNEL ESTIMATION OF THE DENSITY OF A STATISTIC
    SHERMAN, M
    [J]. STATISTICS & PROBABILITY LETTERS, 1994, 21 (01) : 29 - 36
  • [22] Filtered kernel density estimation
    Marchette, David
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2009, 1 (01): : 106 - 109
  • [23] Complementary Kernel Density Estimation
    Miao, Xu
    Rahimi, Ali
    Rao, Rajesh P. N.
    [J]. PATTERN RECOGNITION LETTERS, 2012, 33 (10) : 1381 - 1387
  • [24] Isolation Kernel Density Estimation
    Ting, Kai Ming
    Washio, Takashi
    Wells, Jonathan R.
    Zhang, Hang
    [J]. 2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 619 - 628
  • [25] Kernel density estimation on the torus
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) : 2156 - 2173
  • [26] Reweighted kernel density estimation
    Hazelton, Martin L.
    Turlach, Berwin A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (06) : 3057 - 3069
  • [27] ON KERNEL DENSITY DERIVATIVE ESTIMATION
    JONES, MC
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (08) : 2133 - 2139
  • [28] Adaptive kernel density estimation
    Van Kerm, Philippe
    [J]. STATA JOURNAL, 2003, 3 (02): : 148 - 156
  • [29] Contingent Kernel Density Estimation
    Fortmann-Roe, Scott
    Starfield, Richard
    Getz, Wayne M.
    [J]. PLOS ONE, 2012, 7 (02):
  • [30] Variable kernel density estimation
    Hazelton, ML
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (03) : 271 - 284