Robust Background Modeling with Kernel Density Estimation

被引:3
|
作者
Hua, Man [1 ]
Li, Yanling [1 ]
Luo, Yinhui [1 ]
机构
[1] Civil Aviat Flight Univ China, Sch Comp Sci, Guanghan 618307, Sichuan, Peoples R China
关键词
Adaptive; Background Modeling; Thresholding; Kernel Density Estimation;
D O I
10.3991/ijoe.v11i8.4880
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modeling background and segmenting moving objects are significant techniques for video surveillance and other video processing applications. In this paper, we proposed a novel adaptive approach for modeling background and segmenting moving objects with a non-parametric kernel density estimation. Unlike previous approaches to object detection that detect objects by global thresholds, we used a local threshold to reflect temporal persistence. With a combination of global thresholds and local thresholds, the proposed approach can handle scenes containing gradual illumination variations and noise and has no bootstrapping limitations. Experimental results on different types of videos demonstrate the utility and performance of the proposed approach.
引用
收藏
页码:13 / 16
页数:4
相关论文
共 50 条
  • [1] Robust kernel density estimation
    Kim, JooSeuk
    Scott, Clayton
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3381 - 3384
  • [2] Robust Kernel Density Estimation
    Kim, JooSeuk
    Scott, Clayton D.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 2529 - 2565
  • [3] RECURSIVE KERNEL DENSITY ESTIMATION FOR MODELING THE BACKGROUND AND SEGMENTING MOVING OBJECTS
    Zhu, Qingsong
    Shao, Ling
    Li, Qi
    Xie, Yaoqin
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 1769 - 1772
  • [4] Background Modeling Using Combined Kernel Density Estimation and Correlation Coefficients
    Rui, Ting
    Xing, Jian-chun
    Zhu, Jing-wei
    Fang, Hu-sheng
    [J]. 2011 AASRI CONFERENCE ON APPLIED INFORMATION TECHNOLOGY (AASRI-AIT 2011), VOL 1, 2011, : 200 - 203
  • [5] Automatic robust background modeling using multivariate non-parametric kernel density estimation for visual surveillance
    Tavakkoli, A
    Nicolescu, M
    Bebis, G
    [J]. ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 363 - 370
  • [6] Robust kernels for kernel density estimation
    Wang, Shaoping
    Li, Ang
    Wen, Kuangyu
    Wu, Ximing
    [J]. ECONOMICS LETTERS, 2020, 191
  • [7] Background and foreground modeling using nonparametric kernel density estimation for visual surveillance
    Elgammal, A
    Duraiswami, R
    Harwood, D
    Davis, LS
    [J]. PROCEEDINGS OF THE IEEE, 2002, 90 (07) : 1151 - 1163
  • [8] Spatial Kernel Bandwidth Estimation in Background Modeling
    Jeon, In S.
    Yoo, Suk I.
    [J]. NINTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2016), 2017, 10341
  • [9] An Improved Background and Foreground Modeling Using Kernel Density Estimation in Moving Object Detection
    Yang, Yun
    Liu, Yunyi
    [J]. 2011 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), VOLS 1-4, 2012, : 1050 - 1054
  • [10] Designing Robust Transformers using Robust Kernel Density Estimation
    Han, Xing
    Ren, Tongzheng
    Tan Minh Nguyen
    Khai Nguyen
    Ghosh, Joydeep
    Nhat Ho
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,