Spatial Kernel Bandwidth Estimation in Background Modeling

被引:0
|
作者
Jeon, In S. [1 ]
Yoo, Suk I. [1 ]
机构
[1] Seoul Natl Univ, Dept Comp Sci & Engn, Seoul, South Korea
关键词
Background subtraction; Kernel density estimation; Spatial bandwidth selection; Defect detection; DENSITY-ESTIMATION; SELECTION;
D O I
10.1117/12.2268512
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When modeling the background with kernel density estimation, the selection of a proper kernel bandwidth becomes a critical issue. It is not easy, however, to perform pixel-wise kernel bandwidth estimation when the data associated with each pixel is insufficient. In this paper, we present a new method using spatial information to estimate the pixel-wise kernel bandwidth. The number of pixels in a spatial region is large enough to capture the variance of the underlying distribution on which the optimal kernel bandwidth is estimated. To show the effectiveness of the estimated kernel bandwidth, the background subtraction using this bandwidth is applied to OLED defect detection and its result is compared to those using the bandwidths obtained from other approaches.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Kernel Bandwidth Estimation for Nonparametric Modeling
    Bors, Adrian G.
    Nasios, Nikolaos
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (06): : 1543 - 1555
  • [2] Robust Background Modeling with Kernel Density Estimation
    Hua, Man
    Li, Yanling
    Luo, Yinhui
    [J]. INTERNATIONAL JOURNAL OF ONLINE ENGINEERING, 2015, 11 (08) : 13 - 16
  • [3] Kernel Density Estimation using Joint Spatial-Color-Depth Data for Background Modeling
    Giordano, Daniela
    Palazzo, Simone
    Spampinato, Concetto
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 4388 - 4393
  • [4] RECURSIVE KERNEL DENSITY ESTIMATION FOR MODELING THE BACKGROUND AND SEGMENTING MOVING OBJECTS
    Zhu, Qingsong
    Shao, Ling
    Li, Qi
    Xie, Yaoqin
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 1769 - 1772
  • [5] Background Modeling Using Combined Kernel Density Estimation and Correlation Coefficients
    Rui, Ting
    Xing, Jian-chun
    Zhu, Jing-wei
    Fang, Hu-sheng
    [J]. 2011 AASRI CONFERENCE ON APPLIED INFORMATION TECHNOLOGY (AASRI-AIT 2011), VOL 1, 2011, : 200 - 203
  • [6] BACKGROUND ESTIMATION IN KERNEL SPACE
    Kashani, Hamidreza Baradaran
    Yazdi, Hadi Sadoghi
    Seyedin, Seyed Alireza
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2011, 25 (01) : 1 - 35
  • [7] Improvement of Spatial Autocorrelation, Kernel Estimation, and Modeling Methods by Spatial Standardization on Distance
    Souris, Marc
    Demoraes, Florent
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (04)
  • [8] Variable bandwidth kernel regression estimation
    Nakarmi, Janet
    Sang, Hailin
    Ge, Lin
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2021, 25 : 55 - 86
  • [9] On bandwidth selection in kernel density estimation
    Ushakov, N. G.
    Ushakov, V. G.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (02) : 419 - 428
  • [10] Bootstrapping kernel spectral density estimates with kernel bandwidth estimation
    Zoubir, AM
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL VI, PROCEEDINGS: SIGNAL PROCESSING THEORY AND METHODS, 2003, : 325 - 328