Maximum Kernel Density Estimator for robust fitting

被引:0
|
作者
Wang, Hanzi [1 ]
机构
[1] Johns Hopkins Univ, Dept Comp Sci, Ctr Comp Integrated Surg Syst & Technol, Baltimore, MD 21218 USA
关键词
machine vision; robustness; model fitting; kernel density estimation; algorithms;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Robust model fitting plays an important role in many computer vision applications. In this paper, we propose a new robust estimator - Maximum Kernel Density Estimator (MKDE) based on the nonparametric kernel density estimation technique. It can be viewed as an improved version of our previously proposed Quick Maximum Density Power Estimator (QMDPE) [15]. Compared with QMDPE, MKDE does not require running the mean shift algorithm for each candidate fit. Thus, the computational complexity of MKDE is greatly reduced while the accuracy of MKDE is comparable to QMDPE and outperforms that of other popular robust estimators such as LMedS and RANSAC. We evaluate MKDE in robust line fitting and fundamental matrix estimation. Experiments show that MKDE has achieved promising results.
引用
收藏
页码:3385 / 3388
页数:4
相关论文
共 50 条
  • [21] Robust kernel estimator for densities of unknown smoothness
    Kotlyarova, Yulia
    Zinde-Walsht, Victoria
    JOURNAL OF NONPARAMETRIC STATISTICS, 2007, 19 (02) : 89 - 101
  • [22] A note on the behaviour of a kernel-smoothed kernel density estimator
    Janssen, Paul
    Swanepoel, Jan
    Veraverbeke, Noel
    STATISTICS & PROBABILITY LETTERS, 2020, 158
  • [23] Robust and efficient density fitting
    Dominguez-Soria, Victor D.
    Geudtner, Gerald
    Luis Morales, Jose
    Calaminici, Patrizia
    Koester, Andreas M.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (12):
  • [24] Robust fitting of mixtures using the trimmed likelihood estimator
    Neykov, N.
    Filzmoser, P.
    Dimova, R.
    Neytchev, P.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 299 - 308
  • [25] A kernel type nonparametric density estimator for decompounding
    Van Es, Bert
    Gugushvili, Shota
    Spreij, Peter
    BERNOULLI, 2007, 13 (03) : 672 - 694
  • [26] Kernel density estimator for strong mixing processes
    Kim, TY
    Lee, S
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 133 (02) : 273 - 284
  • [27] Consistency of the beta kernel density function estimator
    Bouezmarni, T
    Rolin, JM
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (01): : 89 - 98
  • [28] New type of gamma kernel density estimator
    Rizky Reza Fauzi
    Yoshihiko Maesono
    Journal of the Korean Statistical Society, 2020, 49 : 882 - 900
  • [29] A multiple kernel-based kernel density estimator for multimodal probability density functions
    Chen, Jia-Qi
    He, Yu -Lin
    Cheng, Ying-Chao
    Fournier-Viger, Philippe
    Huang, Joshua Zhexue
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
  • [30] New type of gamma kernel density estimator
    Fauzi, Rizky Reza
    Maesono, Yoshihiko
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2020, 49 (03) : 882 - 900