On the Existence of Non-Abelian Monopoles: the Algebro-Geometric Approach

被引:0
|
作者
Braden, H. W. [1 ]
Enolski, V. Z. [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland
[2] Univ Bremen, ZARM, D-28359 Bremen, Germany
关键词
weighted shift; essential spectrum; saddle point;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
We develop the Atiyah-Drinfeld-Manin-Hitchin-Nahm construction to study SU(2) non-abelian charge 3 monopoles within the algebro-geometric method. The method starts with finding an algebraic curve, the monopole spectral curve, subject to Hitchin's constraints. We take as the monopole curve the genus four curve that admits a C-3 symmetry, eta(3)+alpha eta zeta(2)+beta zeta(6)+gamma zeta(3)-beta = 0, with real parameters alpha, beta and gamma. In the case alpha = 0 we prove that the only suitable values of gamma/beta are +/- 5 root 2 (beta is given below) which corresponds to the tetrahedrally symmetric solution. We then extend this result by continuity to non-zero values of the parameter alpha and find finally a new one-parameter family of monopole curves with C-3 symmetry.
引用
收藏
页码:53 / +
页数:2
相关论文
共 50 条
  • [21] ALGEBRO-GEOMETRIC PROPERTIES OF SATURATED RINGS
    NUNEZ, A
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 59 (02) : 201 - 214
  • [22] The Algebro-geometric Study of Range Maps
    Marco Compagnoni
    Roberto Notari
    Andrea Alessandro Ruggiu
    Fabio Antonacci
    Augusto Sarti
    [J]. Journal of Nonlinear Science, 2017, 27 : 99 - 157
  • [23] Algebro-geometric solutions to the Manakov hierarchy
    Wu, Lihua
    Geng, Xianguo
    He, Guoliang
    [J]. APPLICABLE ANALYSIS, 2016, 95 (04) : 769 - 800
  • [24] ALGEBRO-GEOMETRIC SOLUTIONS OF THE DIRAC HIERARCHY
    Yang, Xiao
    Han, Jiayan
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 193 (03) : 1894 - 1904
  • [25] On the Algebro-Geometric Integration¶of the Schlesinger Equations
    P. Deift
    A. Its
    A. Kapaev
    X. Zhou
    [J]. Communications in Mathematical Physics, 1999, 203 : 613 - 633
  • [26] Algebro-geometric solutions of the Boussinesq hierarchy
    Dickson, R
    Gesztesy, F
    Unterkofler, K
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (07) : 823 - 879
  • [27] Algebro-Geometric Techniques and Geometric Insights for Finite Frames
    Strawn, Nate
    [J]. FINITE FRAME THEORY: A COMPLETE INTRODUCTION TO OVERCOMPLETENESS, 2016, 73 : 79 - 103
  • [28] Algebro-Geometric Solutions of the TD Hierarchy
    Geng, Xianguo
    Zeng, Xin
    Xue, Bo
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2013, 16 (03) : 229 - 251
  • [29] Algebro-geometric solutions of the Dirac hierarchy
    Xiao Yang
    Jiayan Han
    [J]. Theoretical and Mathematical Physics, 2017, 193 : 1894 - 1904
  • [30] Algebro-Geometric Solutions of the TD Hierarchy
    Xianguo Geng
    Xin Zeng
    Bo Xue
    [J]. Mathematical Physics, Analysis and Geometry, 2013, 16 : 229 - 251