On the Existence of Non-Abelian Monopoles: the Algebro-Geometric Approach

被引:0
|
作者
Braden, H. W. [1 ]
Enolski, V. Z. [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland
[2] Univ Bremen, ZARM, D-28359 Bremen, Germany
关键词
weighted shift; essential spectrum; saddle point;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
We develop the Atiyah-Drinfeld-Manin-Hitchin-Nahm construction to study SU(2) non-abelian charge 3 monopoles within the algebro-geometric method. The method starts with finding an algebraic curve, the monopole spectral curve, subject to Hitchin's constraints. We take as the monopole curve the genus four curve that admits a C-3 symmetry, eta(3)+alpha eta zeta(2)+beta zeta(6)+gamma zeta(3)-beta = 0, with real parameters alpha, beta and gamma. In the case alpha = 0 we prove that the only suitable values of gamma/beta are +/- 5 root 2 (beta is given below) which corresponds to the tetrahedrally symmetric solution. We then extend this result by continuity to non-zero values of the parameter alpha and find finally a new one-parameter family of monopole curves with C-3 symmetry.
引用
收藏
页码:53 / +
页数:2
相关论文
共 50 条
  • [41] Non-Abelian magnetic monopoles and dynamics of confinement
    Bolognesi, S
    Konishi, K
    [J]. NUCLEAR PHYSICS B, 2002, 645 (1-2) : 337 - 348
  • [42] ALGEBRO-GEOMETRIC APPROACH TO THE YANG-BAXTER EQUATION AND RELATED TOPICS
    Dragovic, Vladimir
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2012, 91 (105): : 25 - 48
  • [43] Algebro-Geometric Approach to an Okamoto Transformation, the Painlevé VI and Schlesinger Equations
    Vladimir Dragović
    Vasilisa Shramchenko
    [J]. Annales Henri Poincaré, 2019, 20 : 1121 - 1148
  • [44] Existence and uniqueness of generalized monopoles in six-dimensional non-Abelian gauge theory
    Chen, S. X.
    Pei, L.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) : 1698 - 1706
  • [45] Non-Abelian Geometric Dephasing
    Snizhko, Kyrylo
    Egger, Reinhold
    Gefen, Yuval
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (06)
  • [46] Cosmological monopoles and non-Abelian black holes
    Brihaye, Yves
    Hartmann, Betti
    Radu, Eugen
    Stelea, Cristian
    [J]. NUCLEAR PHYSICS B, 2007, 763 (1-2) : 115 - 146
  • [47] Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies - An analytic approach
    Gesztesy, F
    Weikard, R
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 35 (04) : 271 - 317
  • [48] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101
  • [49] Abelian and non-Abelian quantum geometric tensor
    Ma, Yu-Quan
    Chen, Shu
    Fan, Heng
    Liu, Wu-Ming
    [J]. PHYSICAL REVIEW B, 2010, 81 (24)
  • [50] ALGEBRO-GEOMETRIC SEMISTABILITY OF POLARIZED TORIC MANIFOLDS
    Ono, Hajime
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (04) : 609 - 616