A Demonstration of the Exathlon Benchmarking Platform for Explainable Anomaly Detection

被引:0
|
作者
Jacob, Vincent [1 ]
Song, Fei [1 ]
Stiegler, Arnaud [1 ]
Rad, Bijan [1 ]
Diao, Yanlei [1 ]
Tatbul, Nesime [2 ,3 ]
机构
[1] Ecole Polytech, Palaiseau, France
[2] Intel Labs, New York, NY USA
[3] MIT, Cambridge, MA 02139 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2021年 / 14卷 / 12期
基金
欧洲研究理事会;
关键词
D O I
10.14778/3476311.3476355
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this demo, we introduce Exathlon - a new benchmarking platform for explainable anomaly detection over high-dimensional time series. We designed Exathlon to support data scientists and researchers in developing and evaluating learned models and algorithms for detecting anomalous patterns as well as discovering their explanations. This demo will showcase Exathlon's curated anomaly dataset, novel benchmarking methodology, and end-to-end data science pipeline in action via example usage scenarios.
引用
收藏
页码:2827 / 2830
页数:4
相关论文
共 50 条
  • [41] Explainable Anomaly Detection for District Heating Based on Shapley Additive Explanations
    Park, Sungwoo
    Moon, Jihoon
    Hwang, Eenjun
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 762 - 765
  • [42] Explainable AI for Event and Anomaly Detection and Classification in Healthcare Monitoring Systems
    Abououf, Menatalla
    Singh, Shakti
    Mizouni, Rabeb
    Otrok, Hadi
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (02) : 3446 - 3457
  • [43] A General-Purpose Method for Applying Explainable AI for Anomaly Detection
    Sipple, John
    Youssef, Abdou
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2022), 2022, 13515 : 162 - 174
  • [44] Explainable Anomaly Detection Framework for Maritime Main Engine Sensor Data
    Kim, Donghyun
    Antariksa, Gian
    Handayani, Melia Putri
    Lee, Sangbong
    Lee, Jihwan
    SENSORS, 2021, 21 (15)
  • [45] An Explainable Machine Learning Approach for Anomaly Detection in Satellite Telemetry Data
    Kricheff, Seth
    Maxwell, Emily
    Plaks, Connor
    Simon, Michelle
    2024 IEEE AEROSPACE CONFERENCE, 2024,
  • [46] Explainable Unsupervised Multi-Sensor Industrial Anomaly Detection and Categorization
    Ameli, Mina
    Becker, Philipp Aaron
    Lankers, Katharina
    van Ackeren, Markus
    Baehring, Holger
    Maass, Wolfgang
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1468 - 1475
  • [47] Explainable Anomaly Detection System for Categorical Sensor Data in Internet of Things
    Yuan, Peng
    Tang, Lu-An
    Chen, Haifeng
    Sato, Moto
    Woodward, Kevin
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT VI, 2023, 13718 : 594 - 598
  • [48] A Real-time Explainable Anomaly Detection System for Connected Vehicles
    Nguyen, Duc Cuong
    Nguyen, Kien Dang
    Chacko, Simy
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS), 2022, : 17 - 25
  • [49] Explainable correlation-based anomaly detection for Industrial Control Systems
    Birihanu, Ermiyas
    Lendak, Imre
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 7
  • [50] SPINEX-anomaly: similarity-based predictions with explainable neighbors exploration for anomaly and outlier detection
    Naser, M. Z.
    Naser, Ahmad Z.
    JOURNAL OF BIG DATA, 2025, 12 (01)