A Demonstration of the Exathlon Benchmarking Platform for Explainable Anomaly Detection

被引:0
|
作者
Jacob, Vincent [1 ]
Song, Fei [1 ]
Stiegler, Arnaud [1 ]
Rad, Bijan [1 ]
Diao, Yanlei [1 ]
Tatbul, Nesime [2 ,3 ]
机构
[1] Ecole Polytech, Palaiseau, France
[2] Intel Labs, New York, NY USA
[3] MIT, Cambridge, MA 02139 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2021年 / 14卷 / 12期
基金
欧洲研究理事会;
关键词
D O I
10.14778/3476311.3476355
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this demo, we introduce Exathlon - a new benchmarking platform for explainable anomaly detection over high-dimensional time series. We designed Exathlon to support data scientists and researchers in developing and evaluating learned models and algorithms for detecting anomalous patterns as well as discovering their explanations. This demo will showcase Exathlon's curated anomaly dataset, novel benchmarking methodology, and end-to-end data science pipeline in action via example usage scenarios.
引用
收藏
页码:2827 / 2830
页数:4
相关论文
共 50 条
  • [11] A Taxonomy and Platform for Anomaly Detection
    Sebestyen, Gheorghe
    Hangan, Anca
    Czako, Zoltan
    Kovacs, Gyorgy
    2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS (AQTR), 2018,
  • [12] Explainable Anomaly Detection for Industrial Control System Cybersecurity
    Do Thu Ha
    Nguyen Xuan Hoang
    Nguyen Viet Hoang
    Nguyen Huu Du
    Truong Thu Huong
    Kim Phuc Tran
    IFAC PAPERSONLINE, 2022, 55 (10): : 1183 - 1188
  • [13] Explainable unsupervised anomaly detection for healthcare insurance data
    De Meulemeester, Hannes
    De Smet, Frank
    van Dorst, Johan
    Derroitte, Elise
    De Moor, Bart
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2025, 25 (01)
  • [14] Distributed and explainable GHSOM for anomaly detection in sensor networks
    Mignone, Paolo
    Corizzo, Roberto
    Ceci, Michelangelo
    MACHINE LEARNING, 2024, 113 (07) : 4445 - 4486
  • [15] A Survey on Explainable Anomaly Detection for Industrial Internet of Things
    Huang, Zijie
    Wu, Yulei
    2022 5TH IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (IEEE DSC 2022), 2022,
  • [16] DeepEAD: Explainable Anomaly Detection from System Logs
    Wang, Xinda
    Kim, Kyeong Jin
    Wang, Ye
    Koike-Akino, Toshiaki
    Parsons, Kieran
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 771 - 776
  • [17] Explainable and Interpretable Anomaly Detection Models for Production Data
    Alharbi, Basma
    Liang, Zhenwen
    Aljindan, Jana M.
    Agnia, Ammar K.
    Zhang, Xiangliang
    SPE JOURNAL, 2022, 27 (01): : 349 - 363
  • [18] GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection
    Tang, Jianheng
    Hua, Fengrui
    Gao, Ziqi
    Zhao, Peilin
    Li, Jia
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [19] BENCHMARKING OF ANOMALY DETECTION ALGORITHMS ON AUTOMATED PASSWORD ATTACKS
    Strnad, Pavel
    Svarc, Lukas
    DIGITALIZED ECONOMY, SOCIETY AND INFORMATION MANAGEMENT (IDIMT-2020), 2020, 49 : 237 - 243
  • [20] Explainable Anomaly Detection via Feature-Based Localization
    Kitamura, Shogo
    Nonaka, Yuichi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 408 - 419