A Demonstration of the Exathlon Benchmarking Platform for Explainable Anomaly Detection

被引:0
|
作者
Jacob, Vincent [1 ]
Song, Fei [1 ]
Stiegler, Arnaud [1 ]
Rad, Bijan [1 ]
Diao, Yanlei [1 ]
Tatbul, Nesime [2 ,3 ]
机构
[1] Ecole Polytech, Palaiseau, France
[2] Intel Labs, New York, NY USA
[3] MIT, Cambridge, MA 02139 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2021年 / 14卷 / 12期
基金
欧洲研究理事会;
关键词
D O I
10.14778/3476311.3476355
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this demo, we introduce Exathlon - a new benchmarking platform for explainable anomaly detection over high-dimensional time series. We designed Exathlon to support data scientists and researchers in developing and evaluating learned models and algorithms for detecting anomalous patterns as well as discovering their explanations. This demo will showcase Exathlon's curated anomaly dataset, novel benchmarking methodology, and end-to-end data science pipeline in action via example usage scenarios.
引用
收藏
页码:2827 / 2830
页数:4
相关论文
共 50 条
  • [31] Explainable Anomaly Detection Using Vision Transformer Based SVDD
    Baek, Ji-Won
    Chung, Kyungyong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 6573 - 6586
  • [32] Benchmarking Anomaly Detection Methods: Insights From the UCR Time Series Anomaly Archive
    Baldan, Francisco J.
    Garcia-Gil, Diego
    EXPERT SYSTEMS, 2025, 42 (02)
  • [33] TimeEval: A Benchmarking Toolkit for Time Series Anomaly Detection Algorithms
    Wenig, Phillip
    Schmidl, Sebastian
    Papenbrock, Thorsten
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (12): : 3678 - 3681
  • [34] Demonstration Abstract: Platform for Benchmarking RF-based Indoor Localization Solutions
    Van Haute, Tom
    De Poorter, Eli
    Lemic, Filip
    Handziski, Vlado
    Wirstrom, Niklas
    Wolisz, Adam
    Moerman, Ingrid
    2016 15TH ACM/IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN), 2016,
  • [35] Fast ECG Anomaly Detection on Android Platform
    Zhou Zhi-Min
    Yan Guo-Zheng
    PROCEEDINGS FIRST INTERNATIONAL CONFERENCE ON ELECTRONICS INSTRUMENTATION & INFORMATION SYSTEMS (EIIS 2017), 2017, : 412 - 417
  • [36] E-SFD: Explainable Sensor Fault Detection in the ICS Anomaly Detection System
    Hwang, Chanwoong
    Lee, Taejin
    IEEE ACCESS, 2021, 9 : 140470 - 140486
  • [37] Performance Evaluation of a Combined Anomaly Detection Platform
    Monshizadeh, Mehrnoosh
    Khatri, Vikramajeet
    Atli, Buse Gul
    Kantola, Raimo
    Yan, Zheng
    IEEE ACCESS, 2019, 7 : 100964 - 100978
  • [38] WaXAI: Explainable Anomaly Detection in Industrial Control Systems and Water Systems
    Mathuros, Kornkamon
    Venugopalan, Sarad
    Adepu, Sridhar
    PROCEEDINGS OF THE 10TH ACM CYBER-PHYSICAL SYSTEM SECURITY WORKSHOP, ACM CPSS 2024, 2024, : 3 - 15
  • [39] Explainable machine learning for performance anomaly detection and classification in mobile networks
    Ramirez, Juan M.
    Diez, Fernando
    Rojo, Pablo
    Mancuso, Vincenzo
    Fernandez-Anta, Antonio
    COMPUTER COMMUNICATIONS, 2023, 200 : 113 - 131
  • [40] Explainable AI for Energy Prediction and Anomaly Detection in Smart Energy Buildings
    Prabhu, Hardik
    Valdi, Jayaraman
    Arjunan, Pandarasamy
    PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILDINGS, CITIES, AND TRANSPORTATION, BUILDSYS 2023, 2023, : 472 - 475