A Demonstration of the Exathlon Benchmarking Platform for Explainable Anomaly Detection

被引:0
|
作者
Jacob, Vincent [1 ]
Song, Fei [1 ]
Stiegler, Arnaud [1 ]
Rad, Bijan [1 ]
Diao, Yanlei [1 ]
Tatbul, Nesime [2 ,3 ]
机构
[1] Ecole Polytech, Palaiseau, France
[2] Intel Labs, New York, NY USA
[3] MIT, Cambridge, MA 02139 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2021年 / 14卷 / 12期
基金
欧洲研究理事会;
关键词
D O I
10.14778/3476311.3476355
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this demo, we introduce Exathlon - a new benchmarking platform for explainable anomaly detection over high-dimensional time series. We designed Exathlon to support data scientists and researchers in developing and evaluating learned models and algorithms for detecting anomalous patterns as well as discovering their explanations. This demo will showcase Exathlon's curated anomaly dataset, novel benchmarking methodology, and end-to-end data science pipeline in action via example usage scenarios.
引用
收藏
页码:2827 / 2830
页数:4
相关论文
共 50 条
  • [1] Exathlon: A Benchmark for Explainable Anomaly Detection over Time Series
    Jacob, Vincent
    Song, Fei
    Stiegler, Arnaud
    Rad, Bijan
    Diao, Yanlei
    Tatbul, Nesime
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (11): : 2613 - 2626
  • [2] A Survey on Explainable Anomaly Detection
    Li, Zhong
    Zhu, Yuxuan
    van Leeuwen, Matthijs
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (01)
  • [3] Explainable anomaly detection in spacecraft telemetry
    Cuellar, Sara
    Santos, Matilde
    Alonso, Fernando
    Fabregas, Ernesto
    Farias, Gonzalo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [4] Explainable Anomaly Detection in Industrial Streams
    Jakubowski, Jakub
    Stanisz, Przemyslaw
    Bobek, Szymon
    Nalepa, Grzegorz J.
    ARTIFICIAL INTELLIGENCE-ECAI 2023 INTERNATIONAL WORKSHOPS, PT 1, XAI3, TACTIFUL, XI-ML, SEDAMI, RAAIT, AI4S, HYDRA, AI4AI, 2023, 2024, 1947 : 87 - 100
  • [5] Toward Explainable Deep Anomaly Detection
    Pang, Guansong
    Aggarwal, Charu
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 4056 - 4057
  • [6] VADETIS: An Explainable Evaluator for Anomaly Detection Techniques
    Khelifati, Abdelouahab
    Khayati, Mourad
    Cudre-Mauroux, Philippe
    Haenni, Adrian
    Liu, Qian
    Hauswirth, Manfred
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 2661 - 2664
  • [7] Discrete neural representations for explainable anomaly detection
    Szymanowicz, Stanislaw
    Charles, James
    Cipolla, Roberto
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1506 - 1514
  • [8] Explainable Sequential Anomaly Detection via Prototypes
    Cheng, He
    Xu, Depeng
    Yuan, Shuhan
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [9] Explainable Anomaly and Intrusion Detection Intelligence for Platform Information Technology Using Dimensionality Reduction and Ensemble Learning
    Morris, Brian
    2019 IEEE AUTOTESTCON, 2019,
  • [10] Benchmarking anomaly-based detection systems
    Maxion, RA
    Tan, KMC
    DSN 2000: INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS, PROCEEDINGS, 2000, : 623 - 630