On the global existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces

被引:8
|
作者
Sulaiman, Samira [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
axisymmetric flows; critical Besov spaces; global well-posedness; WELL-POSEDNESS;
D O I
10.3233/ASY-2011-1074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the global existence and uniqueness results for the three-dimensional Boussinesq system with axisymmetric initial data upsilon(0) is an element of B-2,1(5/2)(R-3) and rho(0) is an element of B-2,1(1/2)(R-3) boolean AND L-p(R-3) with p > 6. This system couples the incompressible Euler equations with a transport-diffusion equation governing the density. In this case the Beale-Kato-Majda criterion (see [2]) is not known to be valid and to circumvent this difficulty we use in a crucial way some geometric properties of the vorticity.
引用
收藏
页码:89 / 121
页数:33
相关论文
共 50 条
  • [41] Global existence for the Jordan–Moore–Gibson–Thompson equation in Besov spaces
    Belkacem Said-Houari
    Journal of Evolution Equations, 2022, 22
  • [42] Regular solutions to the fractional Euler alignment system in the Besov spaces framework
    Danchin, Raphael
    Mucha, Piotr B.
    Peszek, Jan
    Wroblewski, Bartosz
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (01): : 89 - 119
  • [43] ON THE GLOBAL REGULARITY OF AXISYMMETRIC NAVIER-STOKES-BOUSSINESQ SYSTEM
    Abidi, Hammadi
    Hmidi, Taoufik
    Keraani, Sahbi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (03) : 737 - 756
  • [44] GEVREY REGULARITY AND EXISTENCE OF NAVIER-STOKES-NERNST-PLANCK-POISSON SYSTEM IN CRITICAL BESOV SPACES
    Yang, Minghua
    Sun, Jinyi
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (05) : 1617 - 1639
  • [45] Global well-posedness of the critical Burgers equation in critical Besov spaces
    Miao, Changxing
    Wu, Gang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (06) : 1673 - 1693
  • [46] Global existence theorem for the 3-D generalized micropolar fluid system in critical Fourier-Besov-Morrey spaces with variable exponent
    Ouidirne, Fatima
    Allalou, Chakir
    Oukessou, Mohamed
    FILOMAT, 2024, 38 (20) : 7161 - 7171
  • [47] Global well-posedness for the Hall-magnetohydrodynamics system in larger critical Besov spaces
    Liu, Lvqiao
    Tan, Jin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 : 382 - 413
  • [48] Global existence of solutions for Boussinesq system with energy dissipation
    Amorim, Charles Braga
    de Almeida, Marcelo Fernandes
    Mateus, Eder
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [49] Local existence and blow-up criterion for the Euler equations in Besov spaces of weak type
    Ryo Takada
    Journal of Evolution Equations, 2008, 8 : 693 - 725
  • [50] Local existence and blow-up criterion for the Euler equations in Besov spaces of weak type
    Takada, Ryo
    JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (04) : 693 - 725