Regular solutions to the fractional Euler alignment system in the Besov spaces framework

被引:23
|
作者
Danchin, Raphael [1 ]
Mucha, Piotr B. [2 ]
Peszek, Jan [3 ,5 ,6 ]
Wroblewski, Bartosz [4 ]
机构
[1] Univ Paris Est, UPEMLV, UPEC, CNRS,LAMA,UMR 8050, 61 Ave Gen de Gaulle, F-94010 Creteil, France
[2] Uniwersytet Warszawski, Inst Matemat Stosowanej & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
[3] Polskiej Akad Nauk, Inst Matemat, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[4] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[5] Univ Maryland, Ctr Sci Computat & Math Modeling CSCAMM, College Pk, MD 20742 USA
[6] Univ Maryland, Dept Math, College Pk, MD 20742 USA
来源
关键词
Euler alignment system; collective behavior models; Besov spaces; nonlocal weighted operators; NAVIER-STOKES EQUATIONS; CUCKER-SMALE FLOCKING; LAGRANGIAN APPROACH; CAUCHY-PROBLEM; DYNAMICS; PARTICLE; MOTION; MODEL;
D O I
10.1142/S0218202519500040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We here construct (large) local and small global-in-time regular unique solutions to the fractional Euler alignment system in the whole space R-d, in the case where the deviation of the initial density from a constant is sufficiently small. Our analysis strongly relies on the use of Besov spaces of the type L-1(0, T; (B) over dot(p,1)(s)), which allow to get time independent estimates for the density even though it satisfies a transport equation with no damping. Our choice of a functional setting is not optimal but aims at providing a transparent and accessible argumentation.
引用
收藏
页码:89 / 119
页数:31
相关论文
共 50 条
  • [1] Weak and strong solutions to the forced fractional Euler alignment system
    Leslie, Trevor M.
    NONLINEARITY, 2019, 32 (01) : 46 - 87
  • [2] Stationary solutions for the fractional Navier–Stokes–Coriolis system in Fourier–Besov spaces
    Leithold L. Aurazo-Alvarez
    Journal of Elliptic and Parabolic Equations, 2023, 9 : 441 - 471
  • [3] Global solutions to the bipolar non-isentropic Euler-Maxwell system in the Besov framework
    Zhao, Shiqiang
    Zhang, Kaijun
    APPLICABLE ANALYSIS, 2024, 103 (13) : 2410 - 2430
  • [4] Global Regularity for the Fractional Euler Alignment System
    Tam Do
    Alexander Kiselev
    Lenya Ryzhik
    Changhui Tan
    Archive for Rational Mechanics and Analysis, 2018, 228 : 1 - 37
  • [5] Global Regularity for the Fractional Euler Alignment System
    Do, Tam
    Kiselev, Alexander
    Ryzhik, Lenya
    Tan, Changhui
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (01) : 1 - 37
  • [6] The optimal decay estimates on the framework of Besov spaces for the Euler-Poisson two-fluid system
    Xu, Jiang
    Kawashima, Shuichi
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (10): : 1813 - 1844
  • [7] Stationary solutions for the fractional Navier-Stokes-Coriolis system in Fourier-Besov spaces
    Aurazo-Alvarez, Leithold L.
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) : 441 - 471
  • [8] Characterization of solutions in Besov spaces for fractional Rayleigh-Stokes equations
    Peng, Li
    Zhou, Yong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [9] On the theory of Besov–Herz spaces and Euler equations
    Lucas C. F. Ferreira
    J. E. Pérez-López
    Israel Journal of Mathematics, 2017, 220 : 283 - 332
  • [10] The commutators of fractional integrals on Besov spaces
    Chen, WG
    Lu, SZ
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (03) : 405 - 414