On the global existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces

被引:8
|
作者
Sulaiman, Samira [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
axisymmetric flows; critical Besov spaces; global well-posedness; WELL-POSEDNESS;
D O I
10.3233/ASY-2011-1074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the global existence and uniqueness results for the three-dimensional Boussinesq system with axisymmetric initial data upsilon(0) is an element of B-2,1(5/2)(R-3) and rho(0) is an element of B-2,1(1/2)(R-3) boolean AND L-p(R-3) with p > 6. This system couples the incompressible Euler equations with a transport-diffusion equation governing the density. In this case the Beale-Kato-Majda criterion (see [2]) is not known to be valid and to circumvent this difficulty we use in a crucial way some geometric properties of the vorticity.
引用
收藏
页码:89 / 121
页数:33
相关论文
共 50 条
  • [31] ON THE PRODUCT IN BESOV-LORENTZ-MORREY SPACES AND EXISTENCE OF SOLUTIONS FOR THE STATIONARY BOUSSINESQ EQUATIONS
    Ferreira, Lucas C. F.
    Perez-Lopez, Jhean E.
    Villamizar-Roa, Elder J.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (06) : 2423 - 2439
  • [32] Global well-posedness for the micropolar fluid system in critical Besov spaces
    Chen, Qionglei
    Miao, Changxing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) : 2698 - 2724
  • [33] Global well-posedness of the compressible Euler with damping in Besov spaces
    Jiu, Quansen
    Zheng, Xiaoxin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (13) : 1570 - 1586
  • [34] Global Solutions to 3D Rotating Boussinesq Equations in Besov Spaces
    Sun, Jinyi
    Liu, Chunlan
    Yang, Minghua
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (02) : 589 - 603
  • [35] Global Solutions to 3D Rotating Boussinesq Equations in Besov Spaces
    Jinyi Sun
    Chunlan Liu
    Minghua Yang
    Journal of Dynamics and Differential Equations, 2020, 32 : 589 - 603
  • [36] GLOBAL EXISTENCE AND GEVREY REGULARITY TO THE NAVIER-STOKES-NERNST-PLANCK-POISSON SYSTEM IN CRITICAL BESOV-MORREY SPACES
    Sun, Jinyi
    Fu, Zunwei
    Yin, Yue
    Yang, Minghua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (06): : 3409 - 3425
  • [37] GLOBAL WELL-POSEDNESS IN CRITICAL BESOV SPACES FOR TWO-FLUID EULER-MAXWELL EQUATIONS
    Xu, Jiang
    Xiong, Jun
    Kawashima, Shuichi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) : 1422 - 1447
  • [38] Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces
    Liu Xiaofeng
    Meng Wang
    Zhifei Zhang
    Journal of Mathematical Fluid Mechanics, 2010, 12 : 280 - 292
  • [39] Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces
    Liu Xiaofeng
    Wang, Meng
    Zhang, Zhifei
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (02) : 280 - 292
  • [40] Local well-posedness for the incompressible Euler equations in the critical Besov spaces
    Zhou, Y
    ANNALES DE L INSTITUT FOURIER, 2004, 54 (03) : 773 - +