Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces

被引:45
|
作者
Liu Xiaofeng [1 ]
Wang, Meng [2 ]
Zhang, Zhifei [3 ]
机构
[1] Donghua Univ, Sch Sci, Dept Appl Math, Shanghai, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou, Zhejiang, Peoples R China
[3] Beijing Univ, Dept Math, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
2D inviscid Boussinesq equations; blowup criterion; 3-D EULER EQUATIONS; UP CRITERION; SMOOTH SOLUTIONS; BOUNDED DOMAIN; EXISTENCE; FLUID;
D O I
10.1007/s00021-008-0286-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the existence of the 2D inviscid Boussinesq equations in critical Besov spaces and obtain some blowup criteria.
引用
收藏
页码:280 / 292
页数:13
相关论文
共 50 条
  • [1] Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces
    Liu Xiaofeng
    Meng Wang
    Zhifei Zhang
    [J]. Journal of Mathematical Fluid Mechanics, 2010, 12 : 280 - 292
  • [2] Local well-posedness for the incompressible Euler equations in the critical Besov spaces
    Zhou, Y
    [J]. ANNALES DE L INSTITUT FOURIER, 2004, 54 (03) : 773 - +
  • [3] WELL-POSEDNESS AND BLOWUP CRITERION OF GENERALIZED POROUS MEDIUM EQUATION IN BESOV SPACES
    Zhou, Xuhuan
    Xiao, Weiliang
    Zheng, Taotao
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [4] ON THE WELL-POSEDNESS OF THE INVISCID BOUSSINESQ EQUATIONS IN THE BESOV-MORREY SPACES
    Bie, Qunyi
    Wang, Qiru
    Yao, Zheng-An
    [J]. KINETIC AND RELATED MODELS, 2015, 8 (03) : 395 - 411
  • [5] Well-posedness in super critical Besov spaces for the compressible MHD equations
    Bian, Dongfen
    Yuan, Baoquan
    [J]. INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2011, 3 (03) : 383 - 399
  • [6] Local well-posedness for the quasi-geostrophic equations in Besov–Lorentz spaces
    Qian Zhang
    Yehua Zhang
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 53 - 70
  • [7] Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces
    Zhang, Qian
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 : 89 - 100
  • [8] Well-posedness for density-dependent Boussinesq equations without dissipation terms in Besov spaces
    Qiu, Hua
    Yao, Zheng'an
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (09) : 1920 - 1931
  • [9] Local well-posedness in critical spaces for the compressible MHD equations
    Bian, Dongfen
    Yuan, Baoquan
    [J]. APPLICABLE ANALYSIS, 2016, 95 (02) : 239 - 269
  • [10] Local Well-Posedness and Blow Up Criterion for the Inviscid Boussinesq System in Holder Spaces
    Cui Xiaona
    Dou Changsheng
    Jiu Quansen
    [J]. JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2012, 25 (03): : 220 - 238