The smooth spectral counting function and the total phase shift for quantum billiards

被引:8
|
作者
Smilansky, U
Ussishkin, I
机构
[1] Department of Physics of Complex Systems, Weizmann Institute of Science
来源
关键词
D O I
10.1088/0305-4470/29/10/033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interior-exterior duality provides a means to extract spectral information (for the interior problem) from the scattering matrix (which is relevant to the exterior problem). We study the smooth spectral counting function for the interior, and compare it to the smooth total phase shift in the exterior. To leading order in the semiclassical approximation these functions are known to coincide. Using various techniques, we study the higher-order corrections of the two functions and discuss the difference between them.
引用
收藏
页码:2587 / 2597
页数:11
相关论文
共 50 条
  • [21] SPECTRAL ZETA-FUNCTIONS FOR AHARONOV-BOHM QUANTUM BILLIARDS
    BERRY, MV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (12): : 2281 - 2296
  • [22] Quantum phase estimation and quantum counting with qudits
    Tonchev, Hristo S.
    Vitanov, Nikolay V.
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [23] Jump at zero of the spectral shift function
    Carron, G
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 212 (01) : 222 - 260
  • [24] The Witten index and the spectral shift function
    Carey, Alan
    Levitina, Galina
    Potapov, Denis
    Sukochev, Fedor
    REVIEWS IN MATHEMATICAL PHYSICS, 2022, 34 (05)
  • [25] Spectral shift function for a discretized continuum
    Rubtsova, O. A.
    Pomerantsev, V. N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (09)
  • [26] Spectral shift function of higher order
    Denis Potapov
    Anna Skripka
    Fedor Sukochev
    Inventiones mathematicae, 2013, 193 : 501 - 538
  • [27] EFFICIENT BOUNDS FOR THE SPECTRAL SHIFT FUNCTION
    SOBOLEV, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (13): : 957 - 960
  • [28] Graph subspaces and the spectral shift function
    Albeverio, S
    Makarov, KA
    Motovilov, AK
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2003, 55 (03): : 449 - 503
  • [29] Weak asymptotics of the spectral shift function
    Bruneau, Vincent
    Dimassi, Mouez
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (11) : 1230 - 1243
  • [30] Spectral shift function, amazing and multifaceted
    M. Sh. Birman
    A. B. Pushnitski
    Integral Equations and Operator Theory, 1998, 30 : 191 - 199