Graph subspaces and the spectral shift function

被引:32
|
作者
Albeverio, S
Makarov, KA
Motovilov, AK
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] JINR, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[3] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
D O I
10.4153/CJM-2003-020-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a new representation for the solution to the operator Sylvester equation in the form of a Stieltjes operator integral. We also formulate new sufficient conditions for the strong solvability of the operator Riccati equation that ensures the existence of reducing graph subspaces; for block operator matrices. Next, we extend the concept of the Lifshits-Krein spectral shift function associated with a pair of self-adjoint operators to the case of pairs of admissible operators that are similar to self-adjoint operators. Based on this new concept we express the spectral shift function arising in a perturbation problem for block operator matrices in terms of the angular operators associated with the corresponding perturbed and unperturbed eigenspaccs.
引用
收藏
页码:449 / 503
页数:55
相关论文
共 50 条
  • [1] The local trace function of shift invariant subspaces
    Dutkay, DE
    JOURNAL OF OPERATOR THEORY, 2004, 52 (02) : 267 - 291
  • [2] The Spectral Shift Function and Spectral Flow
    N. A. Azamov
    A. L. Carey
    F. A. Sukochev
    Communications in Mathematical Physics, 2007, 276 : 51 - 91
  • [3] The spectral shift function and spectral flow
    Azamov, N. A.
    Carey, A. L.
    Sukochev, F. A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 276 (01) : 51 - 91
  • [4] THE ASYMPTOTICS OF A SPECTRAL SHIFT FUNCTION
    IVRII, VJ
    SHUBIN, MA
    DOKLADY AKADEMII NAUK SSSR, 1982, 263 (02): : 283 - 284
  • [5] Theory of Spectral Method for Union of Subspaces-Based Random Geometry Graph
    Li, Gen
    Gu, Yuantao
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [6] Jump at zero of the spectral shift function
    Carron, G
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 212 (01) : 222 - 260
  • [7] The Witten index and the spectral shift function
    Carey, Alan
    Levitina, Galina
    Potapov, Denis
    Sukochev, Fedor
    REVIEWS IN MATHEMATICAL PHYSICS, 2022, 34 (05)
  • [8] Spectral shift function for a discretized continuum
    Rubtsova, O. A.
    Pomerantsev, V. N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (09)
  • [9] Spectral shift function of higher order
    Denis Potapov
    Anna Skripka
    Fedor Sukochev
    Inventiones mathematicae, 2013, 193 : 501 - 538
  • [10] EFFICIENT BOUNDS FOR THE SPECTRAL SHIFT FUNCTION
    SOBOLEV, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (13): : 957 - 960