The smooth spectral counting function and the total phase shift for quantum billiards

被引:8
|
作者
Smilansky, U
Ussishkin, I
机构
[1] Department of Physics of Complex Systems, Weizmann Institute of Science
来源
关键词
D O I
10.1088/0305-4470/29/10/033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interior-exterior duality provides a means to extract spectral information (for the interior problem) from the scattering matrix (which is relevant to the exterior problem). We study the smooth spectral counting function for the interior, and compare it to the smooth total phase shift in the exterior. To leading order in the semiclassical approximation these functions are known to coincide. Using various techniques, we study the higher-order corrections of the two functions and discuss the difference between them.
引用
收藏
页码:2587 / 2597
页数:11
相关论文
共 50 条
  • [31] Meromorphic continuation of the spectral shift function
    Bruneau, V
    Petkov, V
    DUKE MATHEMATICAL JOURNAL, 2003, 116 (03) : 389 - 430
  • [32] EFFICIENT BOUNDS FOR THE SPECTRAL SHIFT FUNCTION
    SOBOLEV, AV
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1993, 58 (01): : 55 - 83
  • [33] The spectral shift function and the invariance principle
    Pushnitski, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 183 (02) : 269 - 320
  • [34] The Spectral Shift Function and the Witten Index
    Carey, Alan
    Gesztesy, Fritz
    Levitina, Galina
    Sukochev, Fedor
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS, 2016, 254 : 71 - 105
  • [35] SPECTRAL SHIFT FUNCTION AND TRACE FORMULA
    SINHA, KB
    MOHAPATRA, AN
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1994, 104 (04): : 819 - 853
  • [36] Spectral shift function of higher order
    Potapov, Denis
    Skripka, Anna
    Sukochev, Fedor
    INVENTIONES MATHEMATICAE, 2013, 193 (03) : 501 - 538
  • [37] Spectral shift function, amazing and multifaceted
    Birman, MS
    Pushnitski, AB
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1998, 30 (02) : 191 - 199
  • [38] Model of quantum chaotic billiards: Spectral statistics and wave functions in two dimensions
    Cuevas, E
    Louis, E
    Verges, JA
    PHYSICAL REVIEW LETTERS, 1996, 77 (10) : 1970 - 1973
  • [40] Non-universal spectral rigidity of quantum pseudo-integrable billiards
    Parab, HD
    Jain, SR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14): : 3903 - 3910