Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2

被引:327
|
作者
Yin, Wan-Jian [1 ]
Tang, Houwen [1 ]
Wei, Su-Huai [1 ]
Al-Jassim, Mowafak M. [1 ]
Turner, John [1 ]
Yan, Yanfa [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
TOTAL-ENERGY CALCULATIONS;
D O I
10.1103/PhysRevB.82.045106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here, we propose general strategies for the rational design of semiconductors to simultaneously meet all of the requirements for a high-efficiency, solar-driven photoelectrochemical (PEC) water-splitting device. As a case study, we apply our strategies for engineering the popular semiconductor, anatase TiO2. Previous attempts to modify known semiconductors such as TiO2 have often focused on a particular individual criterion such as band gap, neglecting the possible detrimental consequence to other important criteria. Density-functional theory calculations reveal that with appropriate donor-acceptor coincorporation alloys with anatase TiO2 hold great potential to satisfy all of the criteria for a viable PEC device. We predict that (Mo, 2N) and (W, 2N) are the best donor-acceptor combinations in the low-alloy concentration regime whereas (Nb, N) and (Ta, N) are the best choice of donor-acceptor pairs in the high-alloy concentration regime.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [41] La implanted band engineering of ZnO nanorods for enhanced photoelectrochemical water splitting performance
    Bimli, Santosh
    Mulani, Sameena R.
    Choudhary, Ekta
    Miglani, Aayushi
    Shinde, Pratibha
    Jadkar, Sandesh R.
    Choudhary, Ram Janay
    Devan, Rupesh S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 71 : 227 - 238
  • [42] Photoelectrochemical solar water splitting using electrospun TiO2 nanofibers
    Mali, Mukund G.
    An, Seongpil
    Liou, Minho
    Al-Deyab, Salem S.
    Yoon, Sam S.
    APPLIED SURFACE SCIENCE, 2015, 328 : 109 - 114
  • [43] Nonstoichiometric rutile TiO2 photoelectrodes for improved photoelectrochemical water splitting
    Zhen, Chao
    Wang, Lianzhou
    Liu, Li
    Liu, Gang
    Lu, Gao Qing
    Cheng, Hui-Ming
    CHEMICAL COMMUNICATIONS, 2013, 49 (55) : 6191 - 6193
  • [44] Selectivity of Photoelectrochemical Water Splitting on TiO2 Anatase Single Crystals
    Nebel, Roman
    Macounova, Katerina Minhova
    Tarabkova, Hana
    Kavan, Ladislav
    Krtil, Petr
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (17): : 10857 - 10867
  • [45] Bifunctional doping effect on the TiO2 nanowires for photoelectrochemical water splitting
    Kim, Hyun Sik
    Dang Thanh Nguyen
    Shin, Eui-Chol
    Lee, Jong-Sook
    Lee, Sang Kwon
    Ahn, Kwang-Soon
    Kang, Soon Hyung
    ELECTROCHIMICA ACTA, 2013, 114 : 159 - 164
  • [46] Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting
    Bo Sun
    Tielin Shi
    Zhengchun Peng
    Wenjun Sheng
    Ting Jiang
    Guanglan Liao
    Nanoscale Research Letters, 8
  • [47] TiO2 photoanodes for electrically enhanced water splitting
    Palmas, S.
    Polcaro, A. M.
    Ruiz, J. Rodriguez
    Da Pozzo, A.
    Mascia, M.
    Vacca, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (13) : 6561 - 6570
  • [48] 3D-Printed Conical Arrays of TiO2 Electrodes for Enhanced Photoelectrochemical Water Splitting
    Lee, Chong-Yong
    Taylor, Adam C.
    Beirne, Stephen
    Wallace, Gordon G.
    ADVANCED ENERGY MATERIALS, 2017, 7 (21)
  • [49] Vertically FeNi layered double hydroxide/TiO2 composite for synergistically enhanced photoelectrochemical water splitting
    Li, Hongxia
    Yang, Hua
    Li, Zhong
    Wang, Xiaoyang
    Liu, Xianguo
    Bandaru, Sateesh
    Zhang, Xuefeng
    ELECTROCHIMICA ACTA, 2021, 387
  • [50] Enhanced photoelectrochemical properties of NiO nanoparticles-decorated TiO2 nanotube arrays for water splitting
    Jasim, Marwah Mohammed
    Dakhil, Osama Abdul Azeez
    Hussein, Emad H.
    Abdullah, Hussein, I
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (13) : 10707 - 10714