Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2

被引:327
|
作者
Yin, Wan-Jian [1 ]
Tang, Houwen [1 ]
Wei, Su-Huai [1 ]
Al-Jassim, Mowafak M. [1 ]
Turner, John [1 ]
Yan, Yanfa [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
TOTAL-ENERGY CALCULATIONS;
D O I
10.1103/PhysRevB.82.045106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here, we propose general strategies for the rational design of semiconductors to simultaneously meet all of the requirements for a high-efficiency, solar-driven photoelectrochemical (PEC) water-splitting device. As a case study, we apply our strategies for engineering the popular semiconductor, anatase TiO2. Previous attempts to modify known semiconductors such as TiO2 have often focused on a particular individual criterion such as band gap, neglecting the possible detrimental consequence to other important criteria. Density-functional theory calculations reveal that with appropriate donor-acceptor coincorporation alloys with anatase TiO2 hold great potential to satisfy all of the criteria for a viable PEC device. We predict that (Mo, 2N) and (W, 2N) are the best donor-acceptor combinations in the low-alloy concentration regime whereas (Nb, N) and (Ta, N) are the best choice of donor-acceptor pairs in the high-alloy concentration regime.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [31] Electronically defective tellurium-doped TiO2 catalysts for enhanced photoelectrochemical water splitting
    Fawzy, Samar M.
    Khedr, Ghada E.
    Allam, Nageh K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (85) : 33111 - 33118
  • [32] Lanthanum Hydroxide Clusters Implanted TiO2 Nanotube Arrays for Enhanced Photoelectrochemical Water Splitting
    Zance, Shankaracharya S.
    Pandiarajan, Aarthi
    Ravichandran, Subbiah
    ENERGY & FUELS, 2023, 37 (13) : 9530 - 9537
  • [33] Hydrogenated TiO2/ZnO heterojunction nanorod arrays with enhanced performance for photoelectrochemical water splitting
    Feng, Wenjian
    Lin, Liangyou
    Li, Haijin
    Chi, Bo
    Pu, Jian
    Li, Jian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (07) : 3938 - 3946
  • [34] Ni/Si-Codoped TiO2 Nanostructure Photoanode for Enhanced Photoelectrochemical Water Splitting
    Li, Ting
    Ding, Dongyan
    MATERIALS, 2019, 12 (24) : 40102
  • [35] 3D flowerlike TiO2/GO and TiO2/MoS2 heterostructures with enhanced photoelectrochemical water splitting
    Hongxia Li
    Wei Dong
    Junhua Xi
    Gang Du
    Zhenguo Ji
    Journal of Materials Science, 2018, 53 : 7609 - 7620
  • [36] 3D flowerlike TiO2/GO and TiO2/MoS2 heterostructures with enhanced photoelectrochemical water splitting
    Li, Hongxia
    Dong, Wei
    Xi, Junhua
    Du, Gang
    Ji, Zhenguo
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (10) : 7609 - 7620
  • [37] Facile synthesis of a heterogeneous Li2TiO3/TiO2 nanocomposite with enhanced photoelectrochemical water splitting
    Li, Zhong
    Chen, Yang
    Shen, Jie
    Cui, Xiaoli
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (14) : 6305 - 6314
  • [38] Water splitting and the band edge positions of TiO2
    Deak, Peter
    Kullgren, Jolla
    Aradi, Balint
    Frauenheim, Thomas
    Kavan, Ladislaw
    ELECTROCHIMICA ACTA, 2016, 199 : 27 - 34
  • [39] Solvent Effects on the Photoelectrochemical Water Oxidation Behaviour of TiO2 Semiconductors
    Bera, Aparajita
    Hajra, Paramita
    Shyamal, Sanjib
    Mandal, Harahari
    Sariket, Debasis
    Kundu, Sukumar
    Mandal, Sampa
    Bhattacharya, Chinmoy
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (03) : 10161 - 10168
  • [40] Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting
    Sun, Bo
    Shi, Tielin
    Peng, Zhengchun
    Sheng, Wenjun
    Jiang, Ting
    Liao, Guanglan
    NANOSCALE RESEARCH LETTERS, 2013, 8