Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator

被引:32
|
作者
Liu, Jia-Bao [1 ]
Butt, Saad Ihsan [2 ]
Nasir, Jamshed [3 ]
Aslam, Adnan [4 ]
Fahad, Asfand [5 ]
Soontharanon, Jarunee [6 ]
机构
[1] Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Peoples R China
[2] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
[3] Virtual Univ, Lahore Campus, Lahore, Pakistan
[4] Univ Engn & Technol, Lahore RCET, Lahore, Pakistan
[5] COMSATS Univ Islamabad, Vehari Campus Campus, Vehari, Pakistan
[6] King Mongkus Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 02期
关键词
Jensen-Mercer inequality; Atangana-Baleanu fractional operators; q-digamma function; convex function;
D O I
10.3934/math.2022121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new Mercer variants of Hermite-Hadamard (HH) type inequalities via Atangana-Baleanu (AB) fractional integral operators pertaining non-local and non-singular kernels. We establish trapezoidal type identities for fractional operator involving non-singular kernel and give Jensen-Mercer (JM) variants of Hermite-Hadamard type inequalities for differentiable mapping Upsilon possessing convex absolute derivatives. We establish connections of our results with several renowned results in the literature and also give applications to special functions.
引用
收藏
页码:2123 / 2140
页数:18
相关论文
共 50 条
  • [1] Jensen-Mercer variant of Hermite-Hadamard type inequalities via generalized fractional operator
    Butt, Saad Ihsan
    Nadeem, Mehroz
    Nasir, Jamshed
    Akdemir, Ahmet Ocak
    Orujova, Malahat Sh.
    FILOMAT, 2024, 38 (29) : 10463 - 10483
  • [2] Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application
    Sahoo, Soubhagya Kumar
    Jarad, Fahd
    Kodamasingh, Bibhakar
    Kashuri, Artion
    AIMS MATHEMATICS, 2022, 7 (07): : 12303 - 12321
  • [3] On New Generalizations of Hermite-Hadamard Type Inequalities via Atangana-Baleanu Fractional Integral Operators
    Set, Erhan
    Akdemir, Ahmet Ocak
    Karaoglan, Ali
    Abdeljawad, Thabet
    Shatanawi, Wasfi
    AXIOMS, 2021, 10 (03)
  • [4] Some New Improvements for Fractional Hermite-Hadamard Inequalities by Jensen-Mercer Inequalities
    Alshehri, Maryam Gharamah Ali
    Hyder, Abd-Allah
    Budak, Huseyin
    Barakat, Mohamed A.
    JOURNAL OF FUNCTION SPACES, 2024, 2024
  • [5] Derivation of Hermite-Hadamard-Jensen-Mercer conticrete inequalities for Atangana-Baleanu fractional integrals by means of majorization
    Wu, Shanhe
    Khan, Muhammad Adil
    Faisal, Shah
    Saeed, Tareq
    Nwaeze, Eze R.
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [6] Hermite-Hadamard-Type Inequalities Involving Harmonically Convex Function via the Atangana-Baleanu Fractional Integral Operator
    Latif, Muhammad Amer
    Kalsoom, Humaira
    Abidin, Muhammad Zainul
    SYMMETRY-BASEL, 2022, 14 (09):
  • [7] New Hadamard-Mercer Inequalities Pertaining Atangana-Baleanu Operator in Katugampola Sense with Applications
    Butt, Saad Ihsan
    Agarwal, Praveen
    Nieto, Juan J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
  • [8] REVERSE JENSEN-MERCER TYPE OPERATOR INEQUALITIES
    Anjidani, Ehsan
    Chancalvaiy, Mohammad Reza
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 : 87 - 99
  • [9] New stochastic fractional integral and related inequalities of Jensen-Mercer and Hermite-Hadamard-Mercer type for convex stochastic processes
    Jarad, Fahd
    Sahoo, Soubhagya Kumar
    Nisar, Kottakkaran Sooppy
    Treanta, Savin
    Emadifar, Homan
    Botmart, Thongchai
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [10] ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR
    Yaldiz, H.
    Sarikaya, M. Z.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (03): : 369 - 378