Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator

被引:32
|
作者
Liu, Jia-Bao [1 ]
Butt, Saad Ihsan [2 ]
Nasir, Jamshed [3 ]
Aslam, Adnan [4 ]
Fahad, Asfand [5 ]
Soontharanon, Jarunee [6 ]
机构
[1] Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Peoples R China
[2] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
[3] Virtual Univ, Lahore Campus, Lahore, Pakistan
[4] Univ Engn & Technol, Lahore RCET, Lahore, Pakistan
[5] COMSATS Univ Islamabad, Vehari Campus Campus, Vehari, Pakistan
[6] King Mongkus Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 02期
关键词
Jensen-Mercer inequality; Atangana-Baleanu fractional operators; q-digamma function; convex function;
D O I
10.3934/math.2022121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new Mercer variants of Hermite-Hadamard (HH) type inequalities via Atangana-Baleanu (AB) fractional integral operators pertaining non-local and non-singular kernels. We establish trapezoidal type identities for fractional operator involving non-singular kernel and give Jensen-Mercer (JM) variants of Hermite-Hadamard type inequalities for differentiable mapping Upsilon possessing convex absolute derivatives. We establish connections of our results with several renowned results in the literature and also give applications to special functions.
引用
收藏
页码:2123 / 2140
页数:18
相关论文
共 50 条
  • [31] Hermite-Hadamard-Mercer Type Inequalities for Fractional Integrals
    Ogulmus, Hatice
    Sarikaya, Mehmet Zeki
    FILOMAT, 2021, 35 (07) : 2425 - 2436
  • [32] HERMITE-HADAMARD TYPE INEQUALITIES FOR KATUGAMPOLA FRACTIONAL INTEGRALS
    Wang, Shu-Hong
    Hai, Xu-Ran
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 1650 - 1667
  • [33] Hermite-Hadamard type inequalities for conformable fractional integrals
    Khan, M. Adil
    Ali, T.
    Dragomir, S. S.
    Sarikaya, M. Z.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1033 - 1048
  • [34] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR MULTIPLICATIVE FRACTIONAL INTEGRALS
    Budak, H.
    Ozcelik, K.
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (01) : 91 - 99
  • [35] Fractional Hermite-Hadamard Type Inequalities for Subadditive Functions
    Ali, Muhammad Aamir
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    FILOMAT, 2022, 36 (11) : 3715 - 3729
  • [36] FRACTIONAL INTEGRAL INEQUALITIES FOR PREINVEX FUNCTIONS VIA ATANGANA-BALEANU INTEGRAL OPERATORS
    Karaoglan, Ali
    Set, Erhan
    Akdemir, Ahmet Ocak
    Ozdemir, M. Emin
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) : 329 - 347
  • [37] Fractional Integral Inequalities via Atangana-Baleanu Operators for Convex and Concave Functions
    Akdemir, Ahmet Ocak
    Karaoglan, Ali
    Ragusa, Maria Alessandra
    Set, Erhan
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [38] Fractional view analysis of the diffusion equations via a natural Atangana-Baleanu operator
    Jan, Himayat Ullah
    Ullah, Hakeem
    Fiza, Mehreen
    Khan, Ilyas
    Eldin, Sayed M.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 83 : 19 - 26
  • [39] ON THE HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS VIA HADAMARD FRACTIONAL INTEGRALS
    Peng, Shan
    Wei, Wei
    Wang, JinRong
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (01): : 55 - 75
  • [40] New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals
    Budak, Huseyin
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 369 - 386