Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator

被引:32
|
作者
Liu, Jia-Bao [1 ]
Butt, Saad Ihsan [2 ]
Nasir, Jamshed [3 ]
Aslam, Adnan [4 ]
Fahad, Asfand [5 ]
Soontharanon, Jarunee [6 ]
机构
[1] Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Peoples R China
[2] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
[3] Virtual Univ, Lahore Campus, Lahore, Pakistan
[4] Univ Engn & Technol, Lahore RCET, Lahore, Pakistan
[5] COMSATS Univ Islamabad, Vehari Campus Campus, Vehari, Pakistan
[6] King Mongkus Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 02期
关键词
Jensen-Mercer inequality; Atangana-Baleanu fractional operators; q-digamma function; convex function;
D O I
10.3934/math.2022121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new Mercer variants of Hermite-Hadamard (HH) type inequalities via Atangana-Baleanu (AB) fractional integral operators pertaining non-local and non-singular kernels. We establish trapezoidal type identities for fractional operator involving non-singular kernel and give Jensen-Mercer (JM) variants of Hermite-Hadamard type inequalities for differentiable mapping Upsilon possessing convex absolute derivatives. We establish connections of our results with several renowned results in the literature and also give applications to special functions.
引用
收藏
页码:2123 / 2140
页数:18
相关论文
共 50 条
  • [41] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [42] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals
    Chen, Hua
    Katugampola, Udita N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1274 - 1291
  • [43] Some new inequalities of Hermite-Hadamard type via Katugampola fractional integral
    Butt, Saad Ihsan
    Bayraktar, Bahtiyar
    Valdes, Juan E. Napoles
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2023, 55 (7-8): : 269 - 290
  • [44] New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization
    Saeed, Tareq
    Khan, Muhammad Adil
    Faisal, Shah
    Alsulami, Hamed H.
    Alhodaly, Mohammed Sh.
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [45] Hermite-Jensen-Mercer Type Inequalities for Caputo Fractional Derivatives
    Zhao, Jinchao
    Butt, Saad Ihsan
    Nasir, Jamshed
    Wang, Zhaobo
    Tlili, Iskander
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [46] Hermite-Hadamard type inequalities for fractional integrals via Green's function
    Khan, Muhammad Adil
    Iqbal, Arshad
    Suleman, Muhammad
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [47] Refinements of Hermite-Hadamard type inequalities for operator convex functions
    Bacak, Vildan
    Turkmen, Ramazan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [48] Some New Hermite-Hadamard Type Inequalities for Quasi-Convex Functions via Fractional Integral Operator
    Set, Erhan
    Celik, Baris
    Akdemir, Ahmet Ocak
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [49] Refinements of Hermite-Hadamard type inequalities for operator convex functions
    Vildan Bacak
    Ramazan Türkmen
    Journal of Inequalities and Applications, 2013 (1)
  • [50] Hermite-Hadamard type inequalities for operator geometrically convex functions
    Taghavi, A.
    Darvish, V.
    Nazari, H. M.
    Dragomir, S. S.
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (01): : 187 - 203