Some New Improvements for Fractional Hermite-Hadamard Inequalities by Jensen-Mercer Inequalities

被引:0
|
作者
Alshehri, Maryam Gharamah Ali [1 ]
Hyder, Abd-Allah [2 ]
Budak, Huseyin [3 ]
Barakat, Mohamed A. [4 ]
机构
[1] Univ Tabuk, Fac Sci, Dept Math, Tabuk, Saudi Arabia
[2] King Khalid Univ, Coll Sci, Dept Math, Box 9004, Abha 61413, Saudi Arabia
[3] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkiye
[4] Univ Coll Al Wajh, Univ Tabuk, Dept Basic Sci, Tabuk, Saudi Arabia
关键词
D O I
10.1155/2024/6691058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article's objective is to introduce a new double inequality based on the Jensen-Mercer JM inequality, known as the Hermite-Hadamard-Mercer inequality. We use the JM inequality to build a number of generalized trapezoid-type inequalities. Moreover, in addition to the JM inequality, we also use the H & ouml;lder inequality and the power mean inequality. Finally, a few examples are given to highlight the main points of our outcomes.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator
    Liu, Jia-Bao
    Butt, Saad Ihsan
    Nasir, Jamshed
    Aslam, Adnan
    Fahad, Asfand
    Soontharanon, Jarunee
    [J]. AIMS MATHEMATICS, 2022, 7 (02): : 2123 - 2140
  • [2] New "Conticrete" Hermite-Hadamard-Jensen-Mercer Fractional Inequalities
    Faisal, Shah
    Adil Khan, Muhammad
    Khan, Tahir Ullah
    Saeed, Tareq
    Alshehri, Ahmed Mohammed
    Nwaeze, Eze R.
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [3] New stochastic fractional integral and related inequalities of Jensen-Mercer and Hermite-Hadamard-Mercer type for convex stochastic processes
    Jarad, Fahd
    Sahoo, Soubhagya Kumar
    Nisar, Kottakkaran Sooppy
    Treanta, Savin
    Emadifar, Homan
    Botmart, Thongchai
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [4] Some New Jensen-Mercer Type Integral Inequalities via Fractional Operators
    Bayraktar, Bahtiyar
    Korus, Peter
    Valdes, Juan Eduardo Napoles
    [J]. AXIOMS, 2023, 12 (06)
  • [5] Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function
    Ma, Fangfang
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 784 - 803
  • [6] On Some Hermite-Hadamard Inequalities for Fractional Integrals and their Applications
    Hwang, S. -R.
    Yeh, S. -Y.
    Tseng, K. -L.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (03) : 464 - 484
  • [7] GENERALIZED FRACTIONAL HERMITE-HADAMARD INEQUALITIES
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Awan, Muhammad Uzair
    [J]. MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) : 1001 - 1011
  • [8] SOME NEW HERMITE-HADAMARD'S TYPE FRACTIONAL INTEGRAL INEQUALITIES
    Dragomir, Sever S.
    Bhatti, Muhammad Iqbal
    Iqbal, Muhammad
    Muddassar, Muhammad
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (04) : 655 - 661
  • [9] NEW INEQUALITIES ON HERMITE-HADAMARD UTILIZING FRACTIONAL INTEGRALS
    Qaisar, Shahid
    Iqbal, Muhammad
    Hussain, Sabir
    Butt, Saad I.
    Meraj, Muhammad A.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (01): : 15 - 27
  • [10] On New Fractional Version of Generalized Hermite-Hadamard Inequalities
    Hyder, Abd-Allah
    Almoneef, Areej A.
    Budak, Huseyin
    Barakat, Mohamed A.
    [J]. MATHEMATICS, 2022, 10 (18)