Detecting and classifying small objects in thermal imagery using a deep neural network

被引:0
|
作者
Hemstrom, Fredrik [1 ]
Nasstrom, Fredrik [1 ]
Karlholm, Jorgen [1 ]
机构
[1] Swedish Def Res Agcy, Dept Sensor Informat, SE-58330 Linkoping, Sweden
关键词
thermal imagery; object detection; deep learning;
D O I
10.1117/12.2533252
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years the rise of deep learning neural networks has shown great results in image classification. Most of the previous work focuses on classification of fairly large objects in visual imagery. This paper presents a method of detecting and classifying small objects in thermal imagery using a deep learning method based on a RetinaNet network. The result shows that a deep neural network with a relative small set of labelled images can be trained to classify objects in thermal imagery. Objects from classes with the most training examples (cars, trucks and persons) can with relative high confidence be classified given an object size of 32x32 pixels or smaller.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Detecting Small Objects in Thermal Images Using Single-Shot Detector
    Xiang-gong Hao Zhang
    Li Hong
    Automatic Control and Computer Sciences, 2021, 55 : 202 - 211
  • [32] Detecting Small Objects in Thermal Images Using Single-Shot Detector
    Zhang, Hao
    Hong, Xiang-gong
    Zhu, Li
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2021, 55 (02) : 202 - 211
  • [33] Detecting and Classifying Small and Deep Targets Using Improved EMI Hardware and Data Processing Approach
    Shubitidze, F.
    Barrowe, B. E.
    Sigman, J. B.
    Wang, Yinlin
    Shamatava, Irma
    O'Neill, K.
    DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XIX, 2014, 9072
  • [34] Detecting and Mitigating DDOS Attacks in SDNs Using Deep Neural Network
    Nawaz, Gul
    Junaid, Muhammad
    Akhunzada, Adnan
    Gani, Abdullah
    Nawazish, Shamyla
    Yaqub, Asim
    Ahmed, Adeel
    Ajab, Huma
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2157 - 2178
  • [35] Detecting Icing on the Blades of a Wind Turbine Using a Deep Neural Network
    Li, Tingshun
    Xu, Jiaohui
    Liu, Zesan
    Wang, Dadi
    Tan, Wen
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 134 (02): : 767 - 782
  • [36] Detecting Climate Change Deniers on Twitter Using a Deep Neural Network
    Chen, Xingyu
    Zou, Lei
    Zhao, Bo
    ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 204 - 210
  • [37] A high power EMI sensor for detecting and classifying small and deep targets
    Shubitidze, F.
    Barrowes, B. E.
    Wang, Yinlin
    Shamatava, Irma
    Sigman, J. B.
    O'Neill, K.
    Steinhurst, Daniel A.
    DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XXI, 2016, 9823
  • [38] Classifying the bacterial taxonomy with its metagenomic data using the deep neural network model
    Raman, Ramakrishnan
    Barve, Amit
    Meenakshi, R.
    Jayaseelan, G. M.
    Ganeshan, P.
    Taqui, Syed Noeman
    Almoallim, Hesham S.
    Alharbi, Sulaiman Ali
    Raghavan, S. S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 7603 - 7618
  • [39] Efficient Scaling of Convolutional Neural Network for Detecting and Classifying Pneumonia Disease
    Sa'idah, Sofia
    Suparta, I. Putu Yowan Nugraha
    Fauziah, Syifa Rezki
    2021 4TH INTERNATIONAL SEMINAR ON RESEARCH OF INFORMATION TECHNOLOGY AND INTELLIGENT SYSTEMS (ISRITI 2021), 2020,
  • [40] Motor Imagery EEG Signal Recognition Using Deep Convolution Neural Network
    Xiao, Xiongliang
    Fang, Yuee
    FRONTIERS IN NEUROSCIENCE, 2021, 15