Detecting and classifying small objects in thermal imagery using a deep neural network

被引:0
|
作者
Hemstrom, Fredrik [1 ]
Nasstrom, Fredrik [1 ]
Karlholm, Jorgen [1 ]
机构
[1] Swedish Def Res Agcy, Dept Sensor Informat, SE-58330 Linkoping, Sweden
关键词
thermal imagery; object detection; deep learning;
D O I
10.1117/12.2533252
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years the rise of deep learning neural networks has shown great results in image classification. Most of the previous work focuses on classification of fairly large objects in visual imagery. This paper presents a method of detecting and classifying small objects in thermal imagery using a deep learning method based on a RetinaNet network. The result shows that a deep neural network with a relative small set of labelled images can be trained to classify objects in thermal imagery. Objects from classes with the most training examples (cars, trucks and persons) can with relative high confidence be classified given an object size of 32x32 pixels or smaller.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] USE OF ARTIFICIAL NEURAL NETWORKS AND GEOGRAPHIC OBJECTS FOR CLASSIFYING REMOTE SENSING IMAGERY
    Silva, Pedro Resende
    Acerbi Junior, Fausto Weimar
    Tavares de Carvalhol, Luis Marcelo
    Soares Scolforo, Jose Roberto
    CERNE, 2014, 20 (02) : 267 - 275
  • [22] Small aircraft detection in infrared aerial imagery based on deep neural network
    Zhang, Kai
    Wang, Xiaotian
    Li, Shaoyi
    Zhang, Bingyi
    INFRARED PHYSICS & TECHNOLOGY, 2024, 143
  • [23] An Improved Deep Neural Network for Small-Ship Detection in SAR Imagery
    Hu, Boyi
    Miao, Hongxia
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 2596 - 2609
  • [24] Small underwater objects classification in multi-view sonar images using the deep neural network
    Zhu K.
    Tian J.
    Huang H.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2020, 41 (01): : 206 - 214
  • [25] Ensemble convolutional neural network for classifying holograms of deformable objects
    Lam, H. H.
    Tsang, P. W. M.
    Poon, T-C
    OPTICS EXPRESS, 2019, 27 (23) : 34051 - 34056
  • [26] Deep Gabor Neural Network for Automatic Detection of Mine-Like Objects in Sonar Imagery
    Hoang Thanh Le
    Phung, Son Lam
    Chapple, Philip B.
    Bouzerdoum, Abdesselam
    Ritz, Christian H.
    Le Chung Tran
    IEEE ACCESS, 2020, 8 : 94126 - 94139
  • [27] Detecting Small Groundwater Discharge Springs Using Handheld Thermal Infrared Imagery
    Roeper, Tania
    Greskowiak, Janek
    Massmann, Gudrun
    GROUNDWATER, 2014, 52 (06) : 936 - 942
  • [28] Classifying Road Intersections using Transfer-Learning on a Deep Neural Network
    Baumann, Ulrich
    Huang, Yuan-Yao
    Glaeser, Claudius
    Herman, Michael
    Banzhaf, Holger
    Zoellner, J. Marius
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 683 - 690
  • [29] Automatically classifying non-functional requirements using deep neural network
    Li, Bing
    Nong, Xiuwen
    PATTERN RECOGNITION, 2022, 132
  • [30] Onion Crop Monitoring with Multispectral Imagery using Deep Neural Network
    Din, Naseer U.
    Naz, Bushra
    Zai, Samer
    Bakhtawer
    Ahmed, Waqar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 303 - 309