Detecting and classifying small objects in thermal imagery using a deep neural network

被引:0
|
作者
Hemstrom, Fredrik [1 ]
Nasstrom, Fredrik [1 ]
Karlholm, Jorgen [1 ]
机构
[1] Swedish Def Res Agcy, Dept Sensor Informat, SE-58330 Linkoping, Sweden
关键词
thermal imagery; object detection; deep learning;
D O I
10.1117/12.2533252
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years the rise of deep learning neural networks has shown great results in image classification. Most of the previous work focuses on classification of fairly large objects in visual imagery. This paper presents a method of detecting and classifying small objects in thermal imagery using a deep learning method based on a RetinaNet network. The result shows that a deep neural network with a relative small set of labelled images can be trained to classify objects in thermal imagery. Objects from classes with the most training examples (cars, trucks and persons) can with relative high confidence be classified given an object size of 32x32 pixels or smaller.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] The sensitivity of a neural network for classifying remotely sensed imagery
    Jarvis, CH
    Stuart, N
    COMPUTERS & GEOSCIENCES, 1996, 22 (09) : 959 - 967
  • [12] Detecting Transportation Modes Using Deep Neural Network
    Wang, Hao
    Liu, GaoJun
    Duan, Jianyong
    Zhang, Lei
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (05): : 1132 - 1135
  • [13] Detecting and Tracking Small Moving Objects in Wide Area Motion Imagery (WAMI) Using Convolutional Neural Networks (CNNs)
    Zhou, Yifan
    Maskell, Simon
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [14] Classifying Near-Threshold Enhancement Using Deep Neural Network
    Sombillo, Denny Lane B.
    Ikeda, Yoichi
    Sato, Toru
    Hosaka, Atsushi
    FEW-BODY SYSTEMS, 2021, 62 (03)
  • [15] Classifying Near-Threshold Enhancement Using Deep Neural Network
    Denny Lane B. Sombillo
    Yoichi Ikeda
    Toru Sato
    Atsushi Hosaka
    Few-Body Systems, 2021, 62
  • [16] Classifying Breast Cancer Using Deep Convolutional Neural Network Method
    Rahman, Musfequa
    Deb, Kaushik
    Jo, Kang-Hyun
    FRONTIERS OF COMPUTER VISION, IW-FCV 2023, 2023, 1857 : 135 - 148
  • [17] Classifying Malware Traffic Using Images and Deep Convolutional Neural Network
    Davis Jr, R. E.
    Xu, Jingsheng
    Roy, Kaushik
    IEEE ACCESS, 2024, 12 : 58031 - 58038
  • [18] Thermal Colorization using Deep Neural Network
    Qayyum, Usman
    Ahsan, Qaisar
    Mahmood, Zahid
    Chaudary, M. Ali
    PROCEEDINGS OF 2018 15TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2018, : 325 - 329
  • [19] Detecting Small Objects Using a Channel-Aware Deconvolutional Network
    Duan, Kaiwen
    Du, Dawei
    Qi, Honggang
    Huang, Qingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (06) : 1639 - 1652
  • [20] Deep Neural Networks approaches for detecting and classifying colorectal polyps
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Lopez-Fernandez, Hugo
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    NEUROCOMPUTING, 2021, 423 : 721 - 734