On the stability of infinite-dimensional linear inequality systems

被引:3
|
作者
López, MA
Mira, JA
Torregrosa, G
机构
[1] Univ Alicante, Dept Stat & Operat Res, Alicante 03071, Spain
[2] Univ Alicante, Dept Math Anal & Appl Math, Alicante 03071, Spain
关键词
infinite linear optimization; perturbations; stability; solution set mapping;
D O I
10.1080/01630569808816874
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The principal aim of this paper is to study the stability of the solution set mapping of a system composed by an arbitrary set of linear inequalities in an infinite-dimensional space. The unknowns space is assumed to be metrizable, which allows us to measure the size of any possible perturbation. Conditions guaranteeing the closedness, the lower semicontinuity and the upper semicontinuity of this mapping, at a particular nominal system, are given in the paper. The more significant differences with respect to the finite dimensional case, previously approached in the context of the so-called semi-infinite optimization, are illustrated by means of convenient examples.
引用
收藏
页码:1065 / 1077
页数:13
相关论文
共 50 条
  • [31] Optimizability and estimatability for infinite-dimensional linear systems
    Weiss, G
    Rebarber, R
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (04) : 1204 - 1232
  • [32] Discretization of infinite-dimensional linear dynamical systems
    Bondarko, VA
    [J]. DIFFERENTIAL EQUATIONS, 1996, 32 (10) : 1309 - 1318
  • [33] INFINITE-DIMENSIONAL LINEAR-SYSTEMS THEORY
    PRITCHARD, AJ
    [J]. PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1979, 126 (06): : 641 - 648
  • [34] Infinite-Dimensional Linear Dynamical Systems with Chaoticity
    X. -C. Fu
    J. Duan
    [J]. Journal of Nonlinear Science, 1999, 9 : 197 - 211
  • [35] Positive Stabilization of Infinite-dimensional Linear Systems
    Abouzaid, B.
    Winkin, J. J.
    Wertz, V.
    [J]. 49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 845 - 850
  • [36] Stabilization for Infinite-Dimensional Switched Linear Systems
    Zheng, Guojie
    Xiong, Jiandong
    Yu, Xin
    Xu, Chao
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (12) : 5456 - 5463
  • [37] Adaptive identification of linear infinite-dimensional systems
    Chattopadhyay, Sudipta
    Sukumar, Srikant
    Natarajan, Vivek
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2024,
  • [38] Infinite-dimensional linear systems: A distributional approach
    Opmeer, Mark R.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 : 738 - 760
  • [39] Stability radius for infinite-dimensional interconnected systems
    Jacob, Birgit
    Moeller, Sebastian
    Wyss, Christian
    [J]. SYSTEMS & CONTROL LETTERS, 2020, 138
  • [40] Some comments on stability of infinite-dimensional systems
    Bobylev N.A.
    Emel'Yanov S.V.
    Korovin S.K.
    [J]. Computational Mathematics and Modeling, 2000, 11 (2) : 103 - 108