Infinite-dimensional linear dynamical systems with chaoticity

被引:23
|
作者
Fu, XC [1 ]
Duan, J
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[3] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
infinite-dimension; linearity; chaoticity;
D O I
10.1007/s003329900069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors present two results on infinite-dimensional linear dynamical systems with chaoticity. One is about the chaoticity of the backward shift map in the space of infinite sequences on a general Frechet space. The other is about the chaoticity of a translation map in the space of real continuous functions. The chaos is shown in the senses of both Li-Yorke and Wiggins. Treating dimensions as freedoms, the two results imply that in the case of an infinite number of freedoms, a system may exhibit complexity even when the action is linear. Finally, the authors discuss physical applications of infinite-dimensional linear chaotic dynamical systems.
引用
收藏
页码:197 / 211
页数:15
相关论文
共 50 条
  • [1] Infinite-Dimensional Linear Dynamical Systems with Chaoticity
    X. -C. Fu
    J. Duan
    [J]. Journal of Nonlinear Science, 1999, 9 : 197 - 211
  • [2] Discretization of infinite-dimensional linear dynamical systems
    Bondarko, VA
    [J]. DIFFERENTIAL EQUATIONS, 1996, 32 (10) : 1309 - 1318
  • [3] Controllability of Switched Infinite-dimensional Linear Dynamical Systems
    Klamka, Jerzy
    Niezabitowski, Michal
    [J]. 2014 19TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2014, : 171 - 175
  • [4] Observing Infinite-dimensional Dynamical Systems
    Lin, Jessica
    Ott, William
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (04): : 1229 - 1243
  • [5] Synchronising hyperchaos in infinite-dimensional dynamical systems
    Tamasevicius, A
    Cenys, A
    Namajunas, A
    Mykolaitis, G
    [J]. CHAOS SOLITONS & FRACTALS, 1998, 9 (08) : 1403 - 1408
  • [6] Gradient Infinite-Dimensional Random Dynamical Systems
    Caraballo, Tomas
    Langa, Jose A.
    Liu, Zhenxin
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (04): : 1817 - 1847
  • [7] On the linearization of infinite-dimensional random dynamical systems
    Backes, Lucas
    Dragicevic, Davor
    [J]. MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3173 - 3191
  • [8] On Linear Infinite-Dimensional Feedback Systems
    Cheremensky, A.
    [J]. 2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 997 - 1002
  • [9] Chaos for some infinite-dimensional dynamical systems
    Rudnicki, R
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (06) : 723 - 738
  • [10] On identifiability of linear infinite-dimensional systems
    Orlov, Y
    [J]. SYSTEM MODELING AND OPTIMIZATION, 2005, 166 : 171 - 176