Infinite-Dimensional Linear Dynamical Systems with Chaoticity

被引:0
|
作者
X. -C. Fu
J. Duan
机构
[1] Mathematics Institute,
[2] University of Warwick,undefined
[3] Coventry CV4 7AL,undefined
[4] UK,undefined
[5] and Wuhan Institute of Physics and Mathematics,undefined
[6] The Chinese Academy of Sciences,undefined
[7] P.O. Box 71010,undefined
[8] Wuhan 430071,undefined
[9] People's Republic of China,undefined
[10] Department of Mathematical Sciences,undefined
[11] Clemson University,undefined
[12] Clemson,undefined
[13] SC 29634,undefined
[14] USA,undefined
来源
关键词
Key words. infinite-dimension, linearity, chaoticity;
D O I
暂无
中图分类号
学科分类号
摘要
The authors present two results on infinite-dimensional linear dynamical systems with chaoticity. One is about the chaoticity of the backward shift map in the space of infinite sequences on a general Fréchet space. The other is about the chaoticity of a translation map in the space of real continuous functions. The chaos is shown in the senses of both Li-Yorke and Wiggins. Treating dimensions as freedoms, the two results imply that in the case of an infinite number of freedoms, a system may exhibit complexity even when the action is linear. Finally, the authors discuss physical applications of infinite-dimensional linear chaotic dynamical systems.
引用
收藏
页码:197 / 211
页数:14
相关论文
共 50 条
  • [1] Infinite-dimensional linear dynamical systems with chaoticity
    Fu, XC
    Duan, J
    JOURNAL OF NONLINEAR SCIENCE, 1999, 9 (02) : 197 - 211
  • [2] Infinite-dimensional linear dynamical systems with chaoticity
    Fu, X.-C.
    Duan, J.
    Journal of Nonlinear Science, 9 (02): : 197 - 211
  • [3] Discretization of infinite-dimensional linear dynamical systems
    Bondarko, VA
    DIFFERENTIAL EQUATIONS, 1996, 32 (10) : 1309 - 1318
  • [4] Controllability of Switched Infinite-dimensional Linear Dynamical Systems
    Klamka, Jerzy
    Niezabitowski, Michal
    2014 19TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2014, : 171 - 175
  • [5] Observing Infinite-dimensional Dynamical Systems
    Lin, Jessica
    Ott, William
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (04): : 1229 - 1243
  • [6] Synchronising hyperchaos in infinite-dimensional dynamical systems
    Tamasevicius, A
    Cenys, A
    Namajunas, A
    Mykolaitis, G
    CHAOS SOLITONS & FRACTALS, 1998, 9 (08) : 1403 - 1408
  • [7] Gradient Infinite-Dimensional Random Dynamical Systems
    Caraballo, Tomas
    Langa, Jose A.
    Liu, Zhenxin
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (04): : 1817 - 1847
  • [8] To Geometric Aspects of Infinite-Dimensional Dynamical Systems
    V. M. Savchin
    Journal of Mathematical Sciences, 2024, 286 (1) : 149 - 157
  • [9] On the linearization of infinite-dimensional random dynamical systems
    Backes, Lucas
    Dragicevic, Davor
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3173 - 3191
  • [10] Synchronizing hyperchaos in infinite-dimensional dynamical systems
    Semiconductor Physics Inst, Vilnius, Lithuania
    Chaos Solitons Fractals, 8 (1403-1408):