Synchronizing hyperchaos in infinite-dimensional dynamical systems

被引:0
|
作者
Semiconductor Physics Inst, Vilnius, Lithuania [1 ]
机构
来源
Chaos Solitons Fractals | / 8卷 / 1403-1408期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Synchronising hyperchaos in infinite-dimensional dynamical systems
    Tamasevicius, A
    Cenys, A
    Namajunas, A
    Mykolaitis, G
    [J]. CHAOS SOLITONS & FRACTALS, 1998, 9 (08) : 1403 - 1408
  • [2] Observing Infinite-dimensional Dynamical Systems
    Lin, Jessica
    Ott, William
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (04): : 1229 - 1243
  • [3] Discretization of infinite-dimensional linear dynamical systems
    Bondarko, VA
    [J]. DIFFERENTIAL EQUATIONS, 1996, 32 (10) : 1309 - 1318
  • [4] Infinite-dimensional linear dynamical systems with chaoticity
    Fu, XC
    Duan, J
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1999, 9 (02) : 197 - 211
  • [5] Infinite-dimensional linear dynamical systems with chaoticity
    Fu, X.-C.
    Duan, J.
    [J]. Journal of Nonlinear Science, 9 (02): : 197 - 211
  • [6] Infinite-Dimensional Linear Dynamical Systems with Chaoticity
    X. -C. Fu
    J. Duan
    [J]. Journal of Nonlinear Science, 1999, 9 : 197 - 211
  • [7] Gradient Infinite-Dimensional Random Dynamical Systems
    Caraballo, Tomas
    Langa, Jose A.
    Liu, Zhenxin
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (04): : 1817 - 1847
  • [8] On the linearization of infinite-dimensional random dynamical systems
    Backes, Lucas
    Dragicevic, Davor
    [J]. MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3173 - 3191
  • [9] Chaos for some infinite-dimensional dynamical systems
    Rudnicki, R
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (06) : 723 - 738
  • [10] Observing Lyapunov Exponents of Infinite-Dimensional Dynamical Systems
    Ott, William
    Rivas, Mauricio A.
    West, James
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (05) : 1098 - 1111