Level set and density estimation on manifolds

被引:2
|
作者
Cholaquidis, Alejandro [1 ]
Fraiman, Ricardo [1 ]
Moreno, Leonardo [2 ]
机构
[1] Univ Republica, Fac Ciencias, Ctr Matemat, Montevideo, Uruguay
[2] Univ Republica, Dept Metodos Cuantitat, FCEA, IESTA, Montevideo, Uruguay
关键词
Density estimation; Level set estimation; Riemannian manifold data; NONPARAMETRIC-ESTIMATION; RIEMANNIAN-MANIFOLDS; THEOREM; CONTOUR;
D O I
10.1016/j.jmva.2021.104925
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We tackle the problem of the estimation of the level sets L-f(lambda) of the density f of a random vector X supported on a smooth manifold M subset of R-d, from an iid sample of X. To do that we introduce a kernel-based estimator (f) over cap (n,h), which is a slightly modified version of the one proposed in Rodriguez-Casal and Saavedra-Nieves (2014) and proves its a.s. uniform convergence to f. Then, we propose two estimators of L-f(lambda), the first one is a plug-in: L-(f) over capn,L-h(lambda), which is proven to be a.s. consistent in Hausdorff distance and distance in measure, if L-f(lambda) does not meet the boundary of M. While the second one assumes that L-f(lambda) is r-convex, and is estimated by means of the r-convex hull of L-(f) over capn,L-h(lambda). The performance of our proposal is illustrated through some simulated examples. In a real data example we analyze the intensity and direction of strong and moderate winds. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Nonparametric Bayesian density estimation on manifolds with applications to planar shapes
    Bhattacharya, Abhishek
    Dunson, David B.
    BIOMETRIKA, 2010, 97 (04) : 851 - 865
  • [42] Bayesian density estimation using ranked set samples
    Ghosh, K
    Tiwari, RC
    ENVIRONMETRICS, 2004, 15 (07) : 711 - 728
  • [43] BOUNDARY DENSITY AND VORONOI SET ESTIMATION FOR IRREGULAR SETS
    Lachieze-Rey, Raphael
    Vega, Sergio
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (07) : 4953 - 4976
  • [44] Visualization of multivariate density estimates with level set trees
    Klemelä, J
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (03) : 599 - 620
  • [45] Polynomial Level-Set Method for Polynomial System Reachable Set Estimation
    Wang, Ta-Chung
    Lall, Sanjay
    West, Matthew
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (10) : 2508 - 2521
  • [46] Skeleton-Based Orienteering for Level Set Estimation
    Bottarelli, Lorenzo
    Bicego, Manuele
    Blum, Jason
    Farinelli, Alessandro
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 1256 - 1264
  • [47] A level set reduced basis approach to parameter estimation
    Grepl, Martin A.
    Veroy, Karen
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (23-24) : 1229 - 1232
  • [48] Depth level set estimation and associated risk measures
    Armaut, Sara
    Diel, Roland
    Laloe, Thomas
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 6584 - 6630
  • [49] Estimation of parameters appearing in the level set evolution equation
    Berg, Jordan M.
    Proceedings of the IEEE Conference on Decision and Control, 1998, 2 : 2323 - 2328
  • [50] FAST LEVEL SET ESTIMATION FROM PROJECTION MEASUREMENTS
    Krishnamurthy, Kalyani
    Bajwa, Waheed U.
    Willett, Rebecca
    Calderbank, Robert
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 585 - 588