Level set and density estimation on manifolds

被引:2
|
作者
Cholaquidis, Alejandro [1 ]
Fraiman, Ricardo [1 ]
Moreno, Leonardo [2 ]
机构
[1] Univ Republica, Fac Ciencias, Ctr Matemat, Montevideo, Uruguay
[2] Univ Republica, Dept Metodos Cuantitat, FCEA, IESTA, Montevideo, Uruguay
关键词
Density estimation; Level set estimation; Riemannian manifold data; NONPARAMETRIC-ESTIMATION; RIEMANNIAN-MANIFOLDS; THEOREM; CONTOUR;
D O I
10.1016/j.jmva.2021.104925
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We tackle the problem of the estimation of the level sets L-f(lambda) of the density f of a random vector X supported on a smooth manifold M subset of R-d, from an iid sample of X. To do that we introduce a kernel-based estimator (f) over cap (n,h), which is a slightly modified version of the one proposed in Rodriguez-Casal and Saavedra-Nieves (2014) and proves its a.s. uniform convergence to f. Then, we propose two estimators of L-f(lambda), the first one is a plug-in: L-(f) over capn,L-h(lambda), which is proven to be a.s. consistent in Hausdorff distance and distance in measure, if L-f(lambda) does not meet the boundary of M. While the second one assumes that L-f(lambda) is r-convex, and is estimated by means of the r-convex hull of L-(f) over capn,L-h(lambda). The performance of our proposal is illustrated through some simulated examples. In a real data example we analyze the intensity and direction of strong and moderate winds. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Locally adaptive density estimation on Riemannian manifolds
    Henry, Guillermo
    Muñoz, Andr´es
    Rodriguez, Daniela
    SORT, 2013, 37 (02): : 111 - 130
  • [12] A Multiphase Level Set Method Based on Total Variation Density Estimation for Image Classification
    Yang Yun
    Sui Lichun
    Lin Ying
    NANOTECHNOLOGY AND COMPUTER ENGINEERING, 2010, 121-122 : 458 - +
  • [13] Level set estimation in medical imaging
    Willett, Rebecca
    Nowak, Robert
    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 1301 - 1306
  • [14] Level set estimation via trees
    Willett, R
    Nowak, R
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 1089 - 1092
  • [15] On level-set approach to motion of manifolds of arbitrary codimension
    Slepcev, D
    INTERFACES AND FREE BOUNDARIES, 2003, 5 (04): : 417 - 458
  • [16] Rayleigh Quotients of the Level Set Manifolds Related to the Nonlinear PDE
    Il'yasov, Yavdat
    MINIMAX THEORY AND ITS APPLICATIONS, 2022, 7 (02): : 277 - 302
  • [17] Fitting Smooth Manifolds to Point Clouds in a Level Set Formulation
    Soleimani, Hossein
    Jacob, George Poothicottu
    Michailovich, Oleg, V
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I, 2019, 11662 : 139 - 149
  • [18] Deformable object hacking: A kernel density estimation approach via level set function evolution
    Ray, Nilanjan
    Saha, Baidya Nath
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2007, 4815 : 624 - 631
  • [19] Kernel Density Estimation on Riemannian Manifolds: Asymptotic Results
    Guillermo Henry
    Daniela Rodriguez
    Journal of Mathematical Imaging and Vision, 2009, 34 : 235 - 239
  • [20] Kernel Density Estimation on Riemannian Manifolds: Asymptotic Results
    Henry, Guillermo
    Rodriguez, Daniela
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2009, 34 (03) : 235 - 239