Level set and density estimation on manifolds

被引:2
|
作者
Cholaquidis, Alejandro [1 ]
Fraiman, Ricardo [1 ]
Moreno, Leonardo [2 ]
机构
[1] Univ Republica, Fac Ciencias, Ctr Matemat, Montevideo, Uruguay
[2] Univ Republica, Dept Metodos Cuantitat, FCEA, IESTA, Montevideo, Uruguay
关键词
Density estimation; Level set estimation; Riemannian manifold data; NONPARAMETRIC-ESTIMATION; RIEMANNIAN-MANIFOLDS; THEOREM; CONTOUR;
D O I
10.1016/j.jmva.2021.104925
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We tackle the problem of the estimation of the level sets L-f(lambda) of the density f of a random vector X supported on a smooth manifold M subset of R-d, from an iid sample of X. To do that we introduce a kernel-based estimator (f) over cap (n,h), which is a slightly modified version of the one proposed in Rodriguez-Casal and Saavedra-Nieves (2014) and proves its a.s. uniform convergence to f. Then, we propose two estimators of L-f(lambda), the first one is a plug-in: L-(f) over capn,L-h(lambda), which is proven to be a.s. consistent in Hausdorff distance and distance in measure, if L-f(lambda) does not meet the boundary of M. While the second one assumes that L-f(lambda) is r-convex, and is estimated by means of the r-convex hull of L-(f) over capn,L-h(lambda). The performance of our proposal is illustrated through some simulated examples. In a real data example we analyze the intensity and direction of strong and moderate winds. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Boundary estimation with the fuzzy set density estimator
    Jesús Fajardo
    Pedro Harmath
    METRON, 2021, 79 : 285 - 302
  • [22] A criterion for the fuzzy set estimation of the density function
    Fajardo, Jesus A.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2014, 28 (03) : 301 - 312
  • [23] Boundary estimation with the fuzzy set density estimator
    Fajardo, Jesus
    Harmath, Pedro
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (03): : 285 - 302
  • [24] Level Set Estimation with Search Space Warping
    Senadeera, Manisha
    Rana, Santu
    Gupta, Sunil
    Venkatesh, Svetha
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT II, 2020, 12085 : 827 - 839
  • [25] Rates of convergence for a Bayesian level set estimation
    Gayraud, G
    Rousseau, J
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (04) : 639 - 660
  • [26] Nearly Optimal Algorithms for Level Set Estimation
    Mason, Blake
    Camilleri, Romain
    Mukherjee, Subhojyoti
    Jamieson, Kevin
    Nowak, Robert
    Jain, Lalit
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [27] Level Set Estimation with Dynamic Sparse Sensing
    Yang, Jing
    Wang, Zuoen
    Wu, Jingxian
    2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 487 - 491
  • [28] Multiscale Gaussian Process Level Set Estimation
    Shekhar, Shubhanshu
    Javidi, Tara
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [29] Opportunistic Sensing and Collaboration for Level Set Estimation
    Gupta, Gagan Rai
    Ramanathan, Parmesh
    AD HOC & SENSOR WIRELESS NETWORKS, 2008, 6 (3-4) : 215 - 237
  • [30] Minimax optimal level-set estimation
    Willett, R. M.
    Nowak, R. D.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) : 2965 - 2979