HSIM: A Supervised Imputation Method for Hierarchical Classification Scenario

被引:1
|
作者
Galvao, Leandro R. [1 ]
Merschmann, Luiz H. C. [1 ]
机构
[1] Univ Fed Ouro Preto, Dept Comp Sci, Ouro Preto, Brazil
来源
DISCOVERY SCIENCE, (DS 2016) | 2016年 / 9956卷
关键词
Missing attribute value imputation; Hierarchical classification; Data mining; DECISION TREES;
D O I
10.1007/978-3-319-46307-0_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The missing value imputation process can be defined as a preprocessing step that fills missing values of attributes in incomplete datasets. Nowadays, the problem of incomplete datasets in the hierarchical classification scenario must be solved using unsupervised missing value imputation methods due to the lack of supervised methods to deal with the hierarchical context. Thus, in this work, we propose and evaluate a supervised missing value imputation method for datasets used in hierarchical classification problems in which the classes are organized into tree structure. Experiments were performed on incomplete datasets to evaluate the effect of the proposed missing value imputation method on classification performance when using a global hierarchical classifier. The results showed that, using the proposed method for dealing with missing attribute values, it provided higher classifier predictive performance than other unsupervised missing value imputation methods.
引用
收藏
页码:134 / 148
页数:15
相关论文
共 50 条
  • [41] A Supervised ANN Method for Memory Failure signature Classification
    Li, Jianbo
    Huang, Yu
    Cheng, Wu-Tung
    Schuermyer, Chris
    Xiang, Dong
    2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT-2012), 2012, : 947 - 949
  • [42] A SUPERVISED MULTIVIEW SPECTRAL EMBEDDING METHOD FOR NEUROIMAGING CLASSIFICATION
    Liu, Sidong
    Zhang, Lelin
    Cai, Weidong
    Song, Yang
    Wang, Zhiyong
    Wen, Lingfeng
    Feng, David Dagan
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 601 - 605
  • [43] Hybrid hierarchical method for electrocardiogram heartbeat classification
    El-Saadawy, Hadeer
    Tantawi, Manal
    Shedeed, Howida A.
    Tolba, Mohamed F.
    IET SIGNAL PROCESSING, 2018, 12 (04) : 506 - 513
  • [44] Text feature selection method for hierarchical classification
    Zhu, Cui-Ling
    Ma, Jun
    Zhang, Dong-Mei
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2011, 24 (01): : 103 - 110
  • [45] A hierarchical classification method using belief functions
    Alshamaa, Daniel
    Chehade, Farah Mourad
    Honeine, Paul
    SIGNAL PROCESSING, 2018, 148 : 68 - 77
  • [46] A New Hierarchical Method for Music Genre Classification
    Du, Wei
    Lin, Hu
    Sun, Jianwei
    Yu, Bo
    Yang, Haibo
    2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 1033 - 1037
  • [47] A HIERARCHICAL INFERENTIAL METHOD FOR INDOOR SCENE CLASSIFICATION
    Jiang, Jingzhe
    Liu, Peng
    Ye, Zhipeng
    Zhao, Wei
    Tang, Xianglong
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2017, 27 (04) : 839 - 852
  • [48] A Hierarchical Knowledge Based Topic Recommendation Method in Public Opinion Scenario
    Shi C.
    Hu Y.
    Feng B.
    Zhang J.
    Yu X.
    Liu Y.
    Cheng X.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (08): : 1811 - 1819
  • [49] Self-supervised learning for remote sensing scene classification under the few shot scenario
    Najd Alosaimi
    Haikel Alhichri
    Yakoub Bazi
    Belgacem Ben Youssef
    Naif Alajlan
    Scientific Reports, 13 (1)
  • [50] Self-supervised learning for remote sensing scene classification under the few shot scenario
    Alosaimi, Najd
    Alhichri, Haikel
    Bazi, Yakoub
    Ben Youssef, Belgacem
    Alajlan, Naif
    SCIENTIFIC REPORTS, 2023, 13 (01):