Self-supervised learning for remote sensing scene classification under the few shot scenario

被引:3
|
作者
Alosaimi, Najd [1 ]
Alhichri, Haikel [1 ]
Bazi, Yakoub [1 ]
Ben Youssef, Belgacem [1 ]
Alajlan, Naif [1 ]
机构
[1] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11451, Saudi Arabia
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
D O I
10.1038/s41598-022-27313-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Scene classification is a crucial research problem in remote sensing (RS) that has attracted many researchers recently. It has many challenges due to multiple issues, such as: the complexity of remote sensing scenes, the classes overlapping (as a scene may contain objects that belong to foreign classes), and the difficulty of gaining sufficient labeled scenes. Deep learning (DL) solutions and in particular convolutional neural networks (CNN) are now state-of-the-art solution in RS scene classification; however, CNN models need huge amounts of annotated data, which can be costly and time-consuming. On the other hand, it is relatively easy to acquire large amounts of unlabeled images. Recently, Self-Supervised Learning (SSL) is proposed as a method that can learn from unlabeled images, potentially reducing the need for labeling. In this work, we propose a deep SSL method, called RS-FewShotSSL, for RS scene classification under the few shot scenario when we only have a few (less than 20) labeled scenes per class. Under this scenario, typical DL solutions that fine-tune CNN models, pre-trained on the ImageNet dataset, fail dramatically. In the SSL paradigm, a DL model is pre-trained from scratch during the pretext task using the large amounts of unlabeled scenes. Then, during the main or the so-called downstream task, the model is fine-tuned on the labeled scenes. Our proposed RS-FewShotSSL solution is composed of an online network and a target network both using the EfficientNet-B3 CNN model as a feature encoder backbone. During the pretext task, RS-FewShotSSL learns discriminative features from the unlabeled images using cross-view contrastive learning. Different views are generated from each image using geometric transformations and passed to the online and target networks. Then, the whole model is optimized by minimizing the cross-view distance between the online and target networks. To address the problem of limited computation resources available to us, our proposed method uses a novel DL architecture that can be trained using both high-resolution and low-resolution images. During the pretext task, RS-FewShotSSL is trained using low-resolution images, thereby, allowing for larger batch sizes which significantly boosts the performance of the proposed pipeline on the task of RS classification. In the downstream task, the target network is discarded, and the online network is fine-tuned using the few labeled shots or scenes. Here, we use smaller batches of both high-resolution and low-resolution images. This architecture allows RS-FewshotSSL to benefit from both large batch sizes and full image sizes, thereby learning from the large amounts of unlabeled data in an effective way. We tested RS-FewShotSSL on three RS public datasets, and it demonstrated a significant improvement compared to other state-of-the-art methods such as: SimCLR, MoCo, BYOL and IDSSL.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Self-supervised learning for remote sensing scene classification under the few shot scenario
    Najd Alosaimi
    Haikel Alhichri
    Yakoub Bazi
    Belgacem Ben Youssef
    Naif Alajlan
    Scientific Reports, 13 (1)
  • [2] Multiform Ensemble Self-Supervised Learning for Few-Shot Remote Sensing Scene Classification
    Li, Jianzhao
    Gong, Maoguo
    Liu, Huilin
    Zhang, Yourun
    Zhang, Mingyang
    Wu, Yue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] Collaborative Self-Supervised Transductive Few-Shot Learning for Remote Sensing Scene Classification
    Han, Haiyan
    Huang, Yangchao
    Wang, Zhe
    ELECTRONICS, 2023, 12 (18)
  • [4] Collaborative Self-Supervised Evolution for Few-Shot Remote Sensing Scene Classification
    Liu, Yiting
    Li, Jianzhao
    Gong, Maoguo
    Liu, Huilin
    Sheng, Kai
    Zhang, Yourun
    Tang, Zedong
    Zhou, Yu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] MANIFOLD AUGMENTATION BASED SELF-SUPERVISED CONTRASTIVE LEARNING FOR FEW-SHOT REMOTE SENSING SCENE CLASSIFICATION
    Sheng, Yunrui
    Xiao, Liang
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2239 - 2242
  • [6] SRL-ProtoNet: Self-supervised representation learning for few-shot remote sensing scene classification
    Liu, Bing
    Zhao, Hongwei
    Li, Jiao
    Gao, Yansheng
    Zhang, Jianrong
    IET COMPUTER VISION, 2024, : 1034 - 1042
  • [7] Self-supervised embedding for generalized zero-shot learning in remote sensing scene classification
    Damalla, Rambabu
    Datla, Rajeshreddy
    Vishnu, Chalavadi
    Mohan, Chalavadi Krishna
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (03)
  • [8] SCL-MLNet: Boosting Few-Shot Remote Sensing Scene Classification via Self-Supervised Contrastive Learning
    Li, Xiaomin
    Shi, Daqian
    Diao, Xiaolei
    Xu, Hao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Meta Self-Supervised Learning for Distribution Shifted Few-Shot Scene Classification
    Gong, Tengfei
    Zheng, Xiangtao
    Lu, Xiaoqiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [10] Few-Shot Learning For Remote Sensing Scene Classification
    Alajaji, Dalal
    Alhichri, Haikel S.
    Ammour, Nassim
    Alajlan, Naif
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 81 - 84