HSIM: A Supervised Imputation Method for Hierarchical Classification Scenario

被引:1
|
作者
Galvao, Leandro R. [1 ]
Merschmann, Luiz H. C. [1 ]
机构
[1] Univ Fed Ouro Preto, Dept Comp Sci, Ouro Preto, Brazil
来源
DISCOVERY SCIENCE, (DS 2016) | 2016年 / 9956卷
关键词
Missing attribute value imputation; Hierarchical classification; Data mining; DECISION TREES;
D O I
10.1007/978-3-319-46307-0_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The missing value imputation process can be defined as a preprocessing step that fills missing values of attributes in incomplete datasets. Nowadays, the problem of incomplete datasets in the hierarchical classification scenario must be solved using unsupervised missing value imputation methods due to the lack of supervised methods to deal with the hierarchical context. Thus, in this work, we propose and evaluate a supervised missing value imputation method for datasets used in hierarchical classification problems in which the classes are organized into tree structure. Experiments were performed on incomplete datasets to evaluate the effect of the proposed missing value imputation method on classification performance when using a global hierarchical classifier. The results showed that, using the proposed method for dealing with missing attribute values, it provided higher classifier predictive performance than other unsupervised missing value imputation methods.
引用
收藏
页码:134 / 148
页数:15
相关论文
共 50 条
  • [21] Supervised multichannel image classification algorithm using hierarchical histogram representation
    Denisova, A. Y.
    Sergeyev, V. V.
    3RD INTERNATIONAL CONFERENCE INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (ITNT-2017), 2017, 201 : 213 - 222
  • [22] Hierarchical graph attention networks for semi-supervised node classification
    Kangjie Li
    Yixiong Feng
    Yicong Gao
    Jian Qiu
    Applied Intelligence, 2020, 50 : 3441 - 3451
  • [23] Missing Data Imputation for Supervised Learning
    Poulos, Jason
    Valle, Rafael
    APPLIED ARTIFICIAL INTELLIGENCE, 2018, 32 (02) : 186 - 196
  • [24] Hierarchical graph attention networks for semi-supervised node classification
    Feng, Yixiong
    Li, Kangjie
    Gao, Yicong
    Qiu, Jian
    APPLIED INTELLIGENCE, 2020, 50 (10) : 3441 - 3451
  • [25] Combined Unsupervised-Supervised Classification Method
    Markowska-Kaczmar, Urszula
    Switek, Tomasz
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT II, PROCEEDINGS, 2009, 5712 : 861 - 868
  • [26] Biased clustering method for partially supervised classification
    Santos, R
    Ohashi, T
    Yoshida, T
    Ejima, T
    NONLINEAR IMAGE PROCESSING IX, 1998, 3304 : 174 - 185
  • [27] SEQUENTIAL HIERARCHICAL REGRESSION IMPUTATION
    Yucel, Recai M.
    Zhao, Enxu
    Schenker, Nathaniel
    Raghunathan, Trivellore E.
    JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2018, 6 (01) : 1 - 22
  • [28] Classification of Hazard Scenario and SDG Qualitative Identification Method
    Zhang Wei-hua
    Wu Chong-guang
    Xa Ying-chun
    Na Yong-liang
    7TH INTERNATIONAL CONFERENCE ON SYSTEM SIMULATION AND SCIENTIFIC COMPUTING ASIA SIMULATION CONFERENCE 2008, VOLS 1-3, 2008, : 1223 - +
  • [29] A hierarchical learning paradigm for semi-supervised classification of remote sensing images
    Alhichri, Haikel
    Bazi, Yacoub
    Alajlan, Naif
    Ammour, Nassim
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4388 - 4391
  • [30] Speaker Classification via Supervised Hierarchical Clustering Using ICA Mixture Model
    Azam, Muhammad
    Bouguila, Nizar
    IMAGE AND SIGNAL PROCESSING (ICISP 2016), 2016, 9680 : 193 - 202