HSIM: A Supervised Imputation Method for Hierarchical Classification Scenario

被引:1
|
作者
Galvao, Leandro R. [1 ]
Merschmann, Luiz H. C. [1 ]
机构
[1] Univ Fed Ouro Preto, Dept Comp Sci, Ouro Preto, Brazil
来源
DISCOVERY SCIENCE, (DS 2016) | 2016年 / 9956卷
关键词
Missing attribute value imputation; Hierarchical classification; Data mining; DECISION TREES;
D O I
10.1007/978-3-319-46307-0_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The missing value imputation process can be defined as a preprocessing step that fills missing values of attributes in incomplete datasets. Nowadays, the problem of incomplete datasets in the hierarchical classification scenario must be solved using unsupervised missing value imputation methods due to the lack of supervised methods to deal with the hierarchical context. Thus, in this work, we propose and evaluate a supervised missing value imputation method for datasets used in hierarchical classification problems in which the classes are organized into tree structure. Experiments were performed on incomplete datasets to evaluate the effect of the proposed missing value imputation method on classification performance when using a global hierarchical classifier. The results showed that, using the proposed method for dealing with missing attribute values, it provided higher classifier predictive performance than other unsupervised missing value imputation methods.
引用
收藏
页码:134 / 148
页数:15
相关论文
共 50 条
  • [1] Semi-Supervised Hierarchical Graph Classification
    Li, Jia
    Huang, Yongfeng
    Chang, Heng
    Rong, Yu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6265 - 6276
  • [2] Weakly-Supervised Hierarchical Text Classification
    Meng, Yu
    Shen, Jiaming
    Zhang, Chao
    Han, Jiawei
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 6826 - 6833
  • [3] Supervised Classification Fuzzy Growing Hierarchical SOM
    del-Hoyo, Rafael
    Medrano, Nicolas
    Martin-del-Brio, Bonifacio
    Lacueva-Perez, Francisco Jose
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, 2008, 5271 : 220 - +
  • [4] Supervised Imagery Classification Based On Hierarchical Macro Manifold
    Huang, Hongbing
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 4843 - 4846
  • [5] CELL SEGMENTATION AND CLASSIFICATION BY HIERARCHICAL SUPERVISED SHAPE RANKING
    Santamaria-Pang, Alberto
    Rittscher, Jens
    Gerdes, Michael
    Padfield, Dirk
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 1296 - 1299
  • [6] Supervised Topic Classification for Modeling a Hierarchical Conference Structure
    Kuznetsov, Mikhail
    Clausel, Marianne
    Amini, Massih-Reza
    Gaussier, Eric
    Strijov, Vadim
    NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 90 - 97
  • [7] Efficient Path Prediction for Semi-Supervised and Weakly Supervised Hierarchical Text Classification
    Xiao, Huiru
    Liu, Xin
    Song, Yangqiu
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 3370 - 3376
  • [8] A supervised clustering method for text classification
    Pappuswamy, U
    Bhembe, D
    Jordan, PW
    VanLehn, K
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2005, 3406 : 704 - 714
  • [9] Sentiment classification of time-sync comments: A semi-supervised hierarchical deep learning method
    Gao, Renzhi
    Yao, Xiaoyu
    Wang, Zhao
    Abedin, Mohammad Zoynul
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 314 (03) : 1159 - 1173
  • [10] Hierarchical Semi-supervised Classification with Incomplete Class Hierarchies
    Dalvi, Bhavana
    Mishra, Aditya
    Cohen, William W.
    PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), 2016, : 193 - 202