Supervised Topic Classification for Modeling a Hierarchical Conference Structure

被引:0
|
作者
Kuznetsov, Mikhail [1 ]
Clausel, Marianne [2 ]
Amini, Massih-Reza [3 ]
Gaussier, Eric [3 ]
Strijov, Vadim [1 ]
机构
[1] Moscow Inst Phys & Technol, Inst Skiy Lane 9, Moscow 141700, Russia
[2] Univ Grenoble Alpes, Lab Jean Kuntzmann, CNRS, F-38041 Grenoble 9, France
[3] Univ Grenoble Alpes, Lab Jean Kuntzmann, Lab Informat Grenoble, F-38041 Grenoble 9, France
来源
关键词
Hierarchical topic model; Labeled classification; Probabilistic latent semantic analysis; EM approach;
D O I
10.1007/978-3-319-26532-2_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we investigate the problem of supervised latent modeling for extracting topic hierarchies from data. The supervised part is given in the form of expert information over document-topic correspondence. To exploit the expert information we use a regularization term that penalizes the difference between a predicted and an expert-given model. We hence add the regularization term to the log-likelihood function and use a stochastic EM based algorithm for parameter estimation. The proposed method is used to construct a topic hierarchy over the proceedings of the European Conference on Operational Research and helps to automatize the abstract submission system.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 50 条
  • [1] NeurIPS Conference Papers Classification Based on Topic Modeling
    Terko, Ajsa
    Zunic, Emir
    Donko, Dzenana
    2019 XXVII INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES (ICAT 2019), 2019,
  • [2] EHLLDA: A Supervised Hierarchical Topic Model
    Mao, Xian-Ling
    Xiao, Yixuan
    Zhou, Qiang
    Wang, Jun
    Huang, Heyan
    CHINESE COMPUTATIONAL LINGUISTICS AND NATURAL LANGUAGE PROCESSING BASED ON NATURALLY ANNOTATED BIG DATA (CCL 2015), 2015, 9427 : 215 - 226
  • [3] Supervised Topic Models for Microblog Classification
    Kataria, Saurabh
    Agarwal, Arvind
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 793 - 798
  • [4] Hierarchical Theme and Topic Modeling
    Chien, Jen-Tzung
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (03) : 565 - 578
  • [5] An Attention Hierarchical Topic Modeling
    Yongheng Chunyan Yin
    Wanli Chen
    Pattern Recognition and Image Analysis, 2021, 31 : 722 - 729
  • [6] An overview of Hierarchical topic modeling
    Liu, Lin
    Tang, Lin
    He, Libo
    Zhou, Wei
    Yao, Shaowen
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 1, 2016, : 391 - 394
  • [7] An Attention Hierarchical Topic Modeling
    Yin, Chunyan
    Chen, Yongheng
    Zuo, Wanli
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2021, 31 (04) : 722 - 729
  • [8] Topic Modeling for Conference Analytics
    Liu, Pengfei
    Jameel, Shoaib
    Lam, Wai
    Ma, Bin
    Meng, Helen
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 707 - 711
  • [9] Bayesian Supervised Topic Modeling with Covariates
    Wilcox, Kenneth Tyler
    Jacobucci, Ross
    Zhang, Zhiyong
    MULTIVARIATE BEHAVIORAL RESEARCH, 2020, 55 (01) : 141 - 141
  • [10] Supervised topic models with word order structure for document classification and retrieval learning
    Jameel, Shoaib
    Lam, Wai
    Bing, Lidong
    INFORMATION RETRIEVAL JOURNAL, 2015, 18 (04): : 283 - 330