An Attention Hierarchical Topic Modeling

被引:0
|
作者
Yin, Chunyan [1 ]
Chen, Yongheng [2 ]
Zuo, Wanli [3 ]
机构
[1] Lingnan Normal Univ, Business Sch, Zhanjiang 524048, Peoples R China
[2] Lingnan Normal Univ, Sch Informat Engn, Zhanjiang 524048, Peoples R China
[3] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
hierarchical probabilistic model; attention mechanism; recommendation system; topic modeling; CLASSIFICATION;
D O I
10.1134/S1054661821040295
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Probabilistic topic models have been used to detect topic-based content presentations when facing a collection of documents. However, topic models capture the semantic information according to reasonable simplifying hypotheses, which ignore the worthwhile word-order information. This paper proposes an attention hierarchical topic modeling, which adopts attention mechanism to unify topic embedding and word embedding together into a framework to enhance the clustering effect of hierarchical Dirichlet process. Otherwise, the multi-information integration Chinese restaurant franchise is adopted to construct this model, which further combines timestamp, user, and topic label to optimize topic modeling. Extensive experiments on real-life applications show that our model outperforms several strong baselines on document modeling and classification.
引用
下载
收藏
页码:722 / 729
页数:8
相关论文
共 50 条
  • [1] An Attention Hierarchical Topic Modeling
    Yongheng Chunyan Yin
    Wanli Chen
    Pattern Recognition and Image Analysis, 2021, 31 : 722 - 729
  • [2] Hierarchical Theme and Topic Modeling
    Chien, Jen-Tzung
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (03) : 565 - 578
  • [3] An overview of Hierarchical topic modeling
    Liu, Lin
    Tang, Lin
    He, Libo
    Zhou, Wei
    Yao, Shaowen
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 1, 2016, : 391 - 394
  • [5] Hierarchical topic modeling with nested hierarchical Dirichlet process
    Yi-qun Ding
    Shan-ping Li
    Zhen Zhang
    Bin Shen
    Journal of Zhejiang University-SCIENCE A, 2009, 10 : 858 - 867
  • [6] Hierarchical topic modeling with nested hierarchical Dirichlet process
    Ding, Yi-qun
    Li, Shan-ping
    Zhang, Zhen
    Shen, Bin
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (06): : 858 - 867
  • [7] ArchiText: Interactive Hierarchical Topic Modeling
    Kim, Hannah
    Drake, Barry
    Endert, Alex
    Park, Haesun
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (09) : 3644 - 3655
  • [8] Graph Attention Topic Modeling Network
    Yang, Liang
    Wu, Fan
    Gu, Junhua
    Wang, Chuan
    Cao, Xiaochun
    Jin, Di
    Guo, Yuanfang
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 144 - 154
  • [9] Neural Attention-Aware Hierarchical Topic Model
    Jin, Yuan
    Zhao, He
    Liu, Ming
    Du, Lan
    Buntine, Wray
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 1042 - 1052
  • [10] Topic Spotting using Hierarchical Networks with Self Attention
    Chitkara, Pooja
    Modi, Ashutosh
    Avvaru, Pravalika
    Janghorbani, Sepehr
    Kapadia, Mubbasir
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 3755 - 3761