Supervised Topic Classification for Modeling a Hierarchical Conference Structure

被引:0
|
作者
Kuznetsov, Mikhail [1 ]
Clausel, Marianne [2 ]
Amini, Massih-Reza [3 ]
Gaussier, Eric [3 ]
Strijov, Vadim [1 ]
机构
[1] Moscow Inst Phys & Technol, Inst Skiy Lane 9, Moscow 141700, Russia
[2] Univ Grenoble Alpes, Lab Jean Kuntzmann, CNRS, F-38041 Grenoble 9, France
[3] Univ Grenoble Alpes, Lab Jean Kuntzmann, Lab Informat Grenoble, F-38041 Grenoble 9, France
来源
关键词
Hierarchical topic model; Labeled classification; Probabilistic latent semantic analysis; EM approach;
D O I
10.1007/978-3-319-26532-2_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we investigate the problem of supervised latent modeling for extracting topic hierarchies from data. The supervised part is given in the form of expert information over document-topic correspondence. To exploit the expert information we use a regularization term that penalizes the difference between a predicted and an expert-given model. We hence add the regularization term to the log-likelihood function and use a stochastic EM based algorithm for parameter estimation. The proposed method is used to construct a topic hierarchy over the proceedings of the European Conference on Operational Research and helps to automatize the abstract submission system.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 50 条
  • [41] Learning Supervised Topic Models for Classification and Regression from Crowds
    Rodrigues, Filipe
    Lourenco, Mariana
    Ribeiro, Bernardete
    Pereira, Francisco C.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2409 - 2422
  • [42] HSIM: A Supervised Imputation Method for Hierarchical Classification Scenario
    Galvao, Leandro R.
    Merschmann, Luiz H. C.
    DISCOVERY SCIENCE, (DS 2016), 2016, 9956 : 134 - 148
  • [43] Supervised Imagery Classification Based On Hierarchical Macro Manifold
    Huang, Hongbing
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 4843 - 4846
  • [44] CELL SEGMENTATION AND CLASSIFICATION BY HIERARCHICAL SUPERVISED SHAPE RANKING
    Santamaria-Pang, Alberto
    Rittscher, Jens
    Gerdes, Michael
    Padfield, Dirk
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 1296 - 1299
  • [45] Conference summary for Topic 3: Nuclear structure
    Ventura, A
    INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, VOL 59, PT 1 AND 2, 1997, 59 : 1767 - 1768
  • [46] Flow Hierarchical Dirichlet Process for Complex Topic Modeling
    Han Z.-M.
    Zhang M.-M.
    Li M.-Q.
    Duan D.-G.
    Chen Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (07): : 1539 - 1552
  • [47] Guiding supervised topic modeling for content based tag recommendation
    Wu, Yong
    Xi, Shengqu
    Yao, Yuan
    Xu, Feng
    Tong, Hanghang
    Lu, Jian
    NEUROCOMPUTING, 2018, 314 : 479 - 489
  • [48] Knowledge Source Rankings for Semi-Supervised Topic Modeling
    Wood, Justin
    Arnold, Corey
    Wang, Wei
    INFORMATION, 2022, 13 (02)
  • [49] Supervised Deep Polylingual Topic Modeling for Scholarly Information Recommendations
    Samatthiyadikun, Pannawit
    Takasu, Atsuhiro
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM 2018), 2018, : 196 - 201
  • [50] Classification of Programming Problems based on Topic Modeling
    Intisar, Chowdhury Md
    Watanobe, Yutaka
    Poudel, Manoj
    Bhalla, Subhash
    PROCEEDINGS OF 2019 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND EDUCATION TECHNOLOGY (ICIET 2019), 2019, : 275 - 283