Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates

被引:22
|
作者
Siburg, Karl Friedrich [1 ]
Stoimenov, Pavel [2 ]
Weiss, Gregor N. F. [3 ]
机构
[1] Tech Univ Dortmund, Fak Math, D-44227 Dortmund, Germany
[2] Tech Univ Dortmund, Fak Stat, D-44227 Dortmund, Germany
[3] Tech Univ Dortmund, Wirtschafts & Sozialwissensch Fak, D-44227 Dortmund, Germany
关键词
Copula; Tail dependence; Nonparametric estimation; Value-at-Risk; Canonical Maximum-Likelihood; OF-FIT TESTS; VINE COPULAS; MODELS; VOLATILITY; MARKETS;
D O I
10.1016/j.jbankfin.2015.01.012
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose to forecast the Value-at-Risk of bivariate portfolios using copulas which are calibrated on the basis of nonparametric sample estimates of the coefficient of lower tail dependence. We compare our proposed method to a conventional copula-GARCH model where the parameter of a Clayton copula is estimated via Canonical Maximum-Likelihood. The superiority of our proposed model is exemplified by analyzing a data sample of nine different bivariate and one nine-dimensional financial portfolio. A comparison of the out-of-sample forecasting accuracy of both models confirms that our model yields economically significantly better Value-at-Risk forecasts than the competing parametric calibration strategy. (C) 2015 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:129 / 140
页数:12
相关论文
共 43 条