Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates

被引:23
|
作者
Siburg, Karl Friedrich [1 ]
Stoimenov, Pavel [2 ]
Weiss, Gregor N. F. [3 ]
机构
[1] Tech Univ Dortmund, Fak Math, D-44227 Dortmund, Germany
[2] Tech Univ Dortmund, Fak Stat, D-44227 Dortmund, Germany
[3] Tech Univ Dortmund, Wirtschafts & Sozialwissensch Fak, D-44227 Dortmund, Germany
关键词
Copula; Tail dependence; Nonparametric estimation; Value-at-Risk; Canonical Maximum-Likelihood; OF-FIT TESTS; VINE COPULAS; MODELS; VOLATILITY; MARKETS;
D O I
10.1016/j.jbankfin.2015.01.012
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose to forecast the Value-at-Risk of bivariate portfolios using copulas which are calibrated on the basis of nonparametric sample estimates of the coefficient of lower tail dependence. We compare our proposed method to a conventional copula-GARCH model where the parameter of a Clayton copula is estimated via Canonical Maximum-Likelihood. The superiority of our proposed model is exemplified by analyzing a data sample of nine different bivariate and one nine-dimensional financial portfolio. A comparison of the out-of-sample forecasting accuracy of both models confirms that our model yields economically significantly better Value-at-Risk forecasts than the competing parametric calibration strategy. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 140
页数:12
相关论文
共 45 条
  • [21] Forecasting Portfolio Value-at-Risk for International Stocks, Bonds and Foreign Exchange
    Hakim, A.
    McAleer, M.
    Chan, F.
    MODSIM 2007: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: LAND, WATER AND ENVIRONMENTAL MANAGEMENT: INTEGRATED SYSTEMS FOR SUSTAINABILITY, 2007, : 1878 - 1884
  • [22] Single-index and portfolio models for forecasting value-at-risk thresholds
    McAleer, Michael
    Da Veiga, Bernardo
    JOURNAL OF FORECASTING, 2008, 27 (03) : 217 - 235
  • [23] Forecasting value at risk allowing for time variation in the variance and kurtosis of portfolio returns
    Guermat, C
    Harris, RDF
    INTERNATIONAL JOURNAL OF FORECASTING, 2002, 18 (03) : 409 - 419
  • [24] The Value at Risk measure of the financial portfolio with the heavy tail margins based on copula functions
    Lu, Jin
    Tian, Wenju
    Zhang, Pu
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL IV: MODELLING AND SIMULATION IN BUSINESS, MANAGEMENT, ECONOMIC AND FINANCE, 2008, : 320 - 326
  • [25] Asymptotic subadditivity/superadditivity of Value-at-Risk under tail dependence
    Zhu, Wenhao
    Li, Lujun
    Yang, Jingping
    Xie, Jiehua
    Sun, Liulei
    MATHEMATICAL FINANCE, 2023, 33 (04) : 1314 - 1369
  • [26] The use of the tail dependence function for high quantile risk measure analysis: an application to portfolio optimization
    Salazar Flores, Yuri
    Diaz Hernandez, Adan
    Alberto Quezada-Tellez, Luis
    Nolasco Jauregui, Oralia
    APPLIED ECONOMICS, 2023, 55 (37) : 4289 - 4303
  • [27] Forecasting Energy Value at Risk Using Multiscale Dependence Based Methodology
    He, Kaijian
    Zha, Rui
    Chen, Yanhui
    Lai, Kin Keung
    ENTROPY, 2016, 18 (05):
  • [28] Forecasting robust value-at-risk estimates: evidence from UK banks
    Sampid, Marius Galabe
    Hasim, Haslifah M.
    QUANTITATIVE FINANCE, 2021, 21 (11) : 1955 - 1975
  • [29] Forecasting macroeconomic tail risk in real time: Do textual data add value?
    Adaemmer, Philipp
    Prueser, Jan
    Schuessler, Rainer A.
    INTERNATIONAL JOURNAL OF FORECASTING, 2025, 41 (01) : 307 - 320
  • [30] Forecasting tail risk measures for financial time series: An extreme value approach with covariates?
    James, Robert
    Leung, Henry
    Leung, Jessica Wai Yin
    Prokhorov, Artem
    JOURNAL OF EMPIRICAL FINANCE, 2023, 71 : 29 - 50