Exact solitons in the Gross-Pitaevskii equation with time-modulated nonlinearity

被引:2
|
作者
Liang, Z. X. [1 ]
Zhang, Z. D. [1 ]
机构
[1] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res & Int Ctr Mat Phys, Shenyang 110016, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2007年 / 21卷 / 07期
基金
中国国家自然科学基金;
关键词
Bose-Einstein condensates; soliton; Feshbach resonance;
D O I
10.1142/S0217984907012864
中图分类号
O59 [应用物理学];
学科分类号
摘要
Exact solitonic solutions of the Gross-Pitaevskii equation with time-modulated nonlinearity of a(t) = a(0) / (t + t(0)) are obtained. With help of these solutions, we analyze the properties of Feshbach-managed solitons in Bose-Einstein condensates in details. Our results show that the parameters of atomic matter waves can be manipulated by proper variation of the scattering length. In particular, an exact two-solition solution is given, from which, it is shown that the separation between the neighboring solitons can be effectively maintained by allowing the solitons to have unequal initial amplitudes.
引用
收藏
页码:383 / 390
页数:8
相关论文
共 50 条
  • [41] Gross-Pitaevskii equation: Variational approach
    Perez, JCD
    Trallero-Giner, C
    Richard, VL
    Trallero-Herrero, C
    Birman, JL
    PHYSICA STATUS SOLIDI C - CONFERENCE AND CRITICAL REVIEWS, VOL 2, NO 10, 2005, 2 (10): : 3665 - 3668
  • [42] The Cauchy problem for the Gross-Pitaevskii equation
    Gerard, P.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 765 - 779
  • [43] A symplectic scheme of Gross-Pitaevskii Equation
    Tian, YiMin
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT UBIQUITOUS COMPUTING AND EDUCATION, 2009, : 552 - 553
  • [44] The inverse problem for the Gross-Pitaevskii equation
    Malomed, Boris A.
    Stepanyants, Yury A.
    CHAOS, 2010, 20 (01)
  • [45] Lax pairs of time-dependent Gross-Pitaevskii equation
    Al Khawaja, Usama
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31): : 9679 - 9691
  • [46] Derivation of the Time Dependent Gross-Pitaevskii Equation in Two Dimensions
    Jeblick, Maximilian
    Leopold, Nikolai
    Pickl, Peter
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 372 (01) : 1 - 69
  • [47] Derivation of the time dependent Gross-Pitaevskii equation with external fields
    Pickl, Peter
    REVIEWS IN MATHEMATICAL PHYSICS, 2015, 27 (01)
  • [48] Exact solutions of the Gross-Pitaevskii equation in periodic potential in the presence of external source
    Kengne, E.
    Vaillancourt, R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
  • [49] Generation of matter-wave solitons of the Gross-Pitaevskii equation with a time-dependent complicated potential
    Mohamadou, Alidou
    Wamba, Etienne
    Doka, Serge Y.
    Ekogo, Thierry B.
    Kofane, Timoleon C.
    PHYSICAL REVIEW A, 2011, 84 (02):
  • [50] Exact Solutions and Symmetry Operators for the Nonlocal Gross-Pitaevskii Equation with Quadratic Potential
    Shapovalov, Alexander
    Trifonov, Andrey
    Lisok, Alexander
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2005, 1