Exact solitons in the Gross-Pitaevskii equation with time-modulated nonlinearity

被引:2
|
作者
Liang, Z. X. [1 ]
Zhang, Z. D. [1 ]
机构
[1] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res & Int Ctr Mat Phys, Shenyang 110016, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2007年 / 21卷 / 07期
基金
中国国家自然科学基金;
关键词
Bose-Einstein condensates; soliton; Feshbach resonance;
D O I
10.1142/S0217984907012864
中图分类号
O59 [应用物理学];
学科分类号
摘要
Exact solitonic solutions of the Gross-Pitaevskii equation with time-modulated nonlinearity of a(t) = a(0) / (t + t(0)) are obtained. With help of these solutions, we analyze the properties of Feshbach-managed solitons in Bose-Einstein condensates in details. Our results show that the parameters of atomic matter waves can be manipulated by proper variation of the scattering length. In particular, an exact two-solition solution is given, from which, it is shown that the separation between the neighboring solitons can be effectively maintained by allowing the solitons to have unequal initial amplitudes.
引用
收藏
页码:383 / 390
页数:8
相关论文
共 50 条
  • [31] Adiabatic theorem for the Gross-Pitaevskii equation
    Gang, Zhou
    Grech, Philip
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (05) : 731 - 756
  • [32] Hydrodynamic Limit of the Gross-Pitaevskii Equation
    Jerrard, Robert L.
    Spirn, Daniel
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (02) : 135 - 190
  • [33] A multisymplectic Scheme for Gross-Pitaevskii Equation
    Tian, YiMin
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT UBIQUITOUS COMPUTING AND EDUCATION, 2009, : 562 - 563
  • [34] The Gross-Pitaevskii equation in the energy space
    Gerard, Patrick
    STATIONARY AND TIME DEPENDENT GROSS-PITAEVSKII EQUATIONS, 2008, 473 : 129 - 148
  • [35] Rigorous derivation of the Gross-Pitaevskii equation
    Erdos, Laszlo
    Schlein, Benjamin
    Yau, Horng-Tzer
    PHYSICAL REVIEW LETTERS, 2007, 98 (04)
  • [36] A critique on the misuse of the Gross-Pitaevskii equation
    Geltman, Sydney
    EPL, 2009, 87 (01)
  • [37] Quantitative Derivation of the Gross-Pitaevskii Equation
    Benedikter, Niels
    de Oliveira, Gustavo
    Schlein, Benjamin
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (08) : 1399 - 1482
  • [38] The stochastic Gross-Pitaevskii equation: II
    Gardiner, CW
    Davis, MJ
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2003, 36 (23) : 4731 - 4753
  • [39] Beyond Gross-Pitaevskii equation for 1D gas: Quasiparticles and solitons
    Kopycinski, Jakub
    Lebek, Maciej
    Marciniak, Maciej
    Oldziejewski, Rafal
    Gorecki, Wojciech
    Pawlowski, Krzysztof
    SCIPOST PHYSICS, 2022, 12 (01):
  • [40] Ground state of the time-independent Gross-Pitaevskii equation
    Dion, Claude M.
    Cances, Eric
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (10) : 787 - 798