Exact solitons in the Gross-Pitaevskii equation with time-modulated nonlinearity

被引:2
|
作者
Liang, Z. X. [1 ]
Zhang, Z. D. [1 ]
机构
[1] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res & Int Ctr Mat Phys, Shenyang 110016, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2007年 / 21卷 / 07期
基金
中国国家自然科学基金;
关键词
Bose-Einstein condensates; soliton; Feshbach resonance;
D O I
10.1142/S0217984907012864
中图分类号
O59 [应用物理学];
学科分类号
摘要
Exact solitonic solutions of the Gross-Pitaevskii equation with time-modulated nonlinearity of a(t) = a(0) / (t + t(0)) are obtained. With help of these solutions, we analyze the properties of Feshbach-managed solitons in Bose-Einstein condensates in details. Our results show that the parameters of atomic matter waves can be manipulated by proper variation of the scattering length. In particular, an exact two-solition solution is given, from which, it is shown that the separation between the neighboring solitons can be effectively maintained by allowing the solitons to have unequal initial amplitudes.
引用
收藏
页码:383 / 390
页数:8
相关论文
共 50 条
  • [21] Stochastic projected Gross-Pitaevskii equation
    Rooney, S. J.
    Blakie, P. B.
    Bradley, A. S.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [22] Vortices in nonlocal Gross-Pitaevskii equation
    Shchesnovich, VS
    Kraenkel, RA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (26): : 6633 - 6651
  • [23] Numerical solution for the Gross-Pitaevskii equation
    Hua, Wei
    Liu, Xueshen
    Ding, Peizhu
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 40 (03) : 243 - 255
  • [24] Vortex helices for the Gross-Pitaevskii equation
    Chiron, D
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (11): : 1555 - 1647
  • [25] Modulational instability of a modified Gross-Pitaevskii equation with higher-order nonlinearity
    Qi, Xiu-Ying
    Xue, Ju-Kui
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [26] Vortex rings for the Gross-Pitaevskii equation
    Bethuel, F
    Orlandi, G
    Smets, D
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2004, 6 (01) : 17 - 94
  • [27] On the bilinear control of the Gross-Pitaevskii equation
    Chambrion, Thomas
    Thomann, Laurent
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (03): : 605 - 626
  • [28] On the derivation of the Gross-Pitaevskii equation.
    Adami, R
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2005, 8B (02): : 359 - 368
  • [29] Stability of the solutions of the Gross-Pitaevskii equation
    Jackson, AD
    Kavoulakis, GM
    Lundh, E
    PHYSICAL REVIEW A, 2005, 72 (05):
  • [30] GENERALIZED SOLUTIONS TO THE GROSS-PITAEVSKII EQUATION
    ICHIYANAGI, M
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1487 - 1498