Online Discovery of Congregate Groups on Sparse Spatio-temporal Data

被引:0
|
作者
Chen, Tianran [1 ,2 ]
Zhang, Yongzheng [1 ,2 ]
Tuo, Yupeng [1 ]
Wang, Weiguang [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
GATHERING PATTERNS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The pervasiveness of location-acquisition technologies leads to large amounts of spatio-temporal data, which brings us opportunities and challenges to discover interesting group patterns from these individual's trajectories. In this work, firstly, we propose a novel group pattern called congregate group, which captures various congregations by exploiting trajectory streams. Then, we design a discovery framework which contains three main stages including trajectory preprocessing, crowds generation and congregate groups discovery to detect congregations. Meanwhile, an interpolation method is proposed to handle missing points on sparse data. Besides, a set of optimization techniques is applied to reduce computational costs. Finally, our extensive experiments based on real cellular network dataset and real taxicab trajectory dataset demonstrate the effectiveness, efficiency and scalability of our proposed approach.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Bayesian multivariate spatio-temporal model for quasi-sparse count data
    Kang, Hyunju
    Lee, Kyoungjae
    KOREAN JOURNAL OF APPLIED STATISTICS, 2025, 38 (01)
  • [32] Spatio-temporal analysis on online designated driving based on empirical data
    Huo, Zhengqi
    Yang, Xiaobao
    Liu, Xiaobing
    Yan, Xuedong
    TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2024, 183
  • [33] A tensor-based interpolation method for sparse spatio-temporal field data
    Li, D. S.
    Yang, L.
    Yu, Z. Y.
    Hu, Y.
    Yuan, L. W.
    JOURNAL OF SPATIAL SCIENCE, 2020, 65 (02) : 307 - 325
  • [34] Predictive spatio-temporal model for spatially sparse global solar radiation data
    Andre, Maina
    Dabo-Niang, Sophie
    Soubdhan, Ted
    Ould-Baba, Hanany
    ENERGY, 2016, 111 : 599 - 608
  • [35] Nonparametric Mixture of Sparse Regressions on Spatio-Temporal Data - An Application to Climate Prediction
    Liu, Yumin
    Chen, Junxiang
    Ganguly, Auroop
    Dy, Jennifer
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2556 - 2564
  • [36] Accelerating moving clusters discovery of spatio-temporal data on GPU using CUDA
    Zhu, Jin
    Jiang, Nan
    Hu, Bin
    Shao, Hua
    Journal of Computational Information Systems, 2015, 11 (07): : 2419 - 2427
  • [37] Online Spatio-temporal Action Detection for Eldercare
    Koh, Thean Chun
    Yeo, Chai Kiat
    Jing, Xuan
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 126 - 127
  • [38] Two Stage Knowledge Discovery for Spatio-temporal Radio-emission Data
    Haringer, Matthias
    Hotz, Lothar
    Kamp, Vera
    ECAI 2008, PROCEEDINGS, 2008, 178 : 673 - +
  • [39] Sparse Spatio-temporal Gaussian Processes with General Likelihoods
    Hartikainen, Jouni
    Riihimaki, Jaakko
    Sarkka, Simo
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 193 - 200
  • [40] Spatio-temporal pattern discovery in sensor data: A multivalued decision systems approach
    Mal-Sarkar, Sanchita
    Sikder, Iftikhar U.
    Konangi, Vijay K.
    KNOWLEDGE-BASED SYSTEMS, 2016, 109 : 137 - 146