Online Spatio-temporal Action Detection for Eldercare

被引:1
|
作者
Koh, Thean Chun [1 ]
Yeo, Chai Kiat [1 ]
Jing, Xuan [2 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[2] NCS Pte Ltd, NEXT Prod & Platform, Singapore, Singapore
关键词
healthcare monitoring; computer vision; deep learning; action detection;
D O I
10.1109/CAI54212.2023.00061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using AI technologies for assisted living of the elderly greatly facilitates care provision by caregivers and healthcare professionals. This paper proposes a lightweight model for real-time detection of human actions focusing on the elderly using a conventional RGB camera and an AI edge device. Our model analyzes and predicts the actions as the video frames arrive live from the camera and utilize spatio-temporal action detection to detect and locate the human actions with minimum latency. It can also apply to scenarios involving multiple people. We evaluate the proposed method using the popular public action detection dataset, AVA as well as an in-house self-collected dataset. The results show that our model can accurately detect the various actions in real-time at 15.2 fps using a resource-constrained edge device, offering significant potential for applications in various smart monitoring systems.
引用
收藏
页码:126 / 127
页数:2
相关论文
共 50 条
  • [1] Online spatio-temporal action detection with adaptive sampling and hierarchical modulation
    Su, Shaowen
    Gan, Minggang
    [J]. Multimedia Systems, 2024, 30 (06)
  • [2] Online Action Tube Detection via Resolving the Spatio-temporal Context Pattern
    Huang, Jingjia
    Li, Nannan
    Zhong, Jiaxing
    Li, Thomas H.
    Li, Ge
    [J]. PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 993 - 1001
  • [3] Clustered Spatio-Temporal Manifolds for Online Action Recognition
    Bloom, Victoria
    Makris, Dimitrios
    Argyriou, Vasileios
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3963 - 3968
  • [4] Online Hierarchical Linking of Action Tubes for Spatio-Temporal Action Detection Based on Multiple Clues
    Su, Shaowen
    Zhang, Yan
    [J]. IEEE ACCESS, 2024, 12 : 54661 - 54672
  • [5] Real-time Online Action Detection Forests using Spatio-temporal Contexts
    Baek, Seungryul
    Kim, Kwang In
    Kim, Tae-Kyun
    [J]. 2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 158 - 167
  • [6] Online Spatio-Temporal Action Detection in Long-Distance Imaging Affected by the Atmosphere
    Chen, Eli
    Haik, Oren
    Yitzhaky, Yitzhak
    [J]. IEEE ACCESS, 2021, 9 : 24531 - 24545
  • [7] Long term spatio-temporal modeling for action detection
    Tapaswi, Makarand
    Kumar, Vijay
    Laptev, Ivan
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 210
  • [8] Spatio-Temporal Action Detection Under Large Motion
    Singh, Gurkirt
    Choutas, Vasileios
    Saha, Suman
    Yu, Fisher
    Van Gool, Luc
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5998 - 6007
  • [9] Spatio-Temporal Attention Networks for Action Recognition and Detection
    Li, Jun
    Liu, Xianglong
    Zhang, Wenxuan
    Zhang, Mingyuan
    Song, Jingkuan
    Sebe, Nicu
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2990 - 3001
  • [10] An Efficient Spatio-Temporal Pyramid Transformer for Action Detection
    Weng, Yuetian
    Pan, Zizheng
    Han, Mingfei
    Chang, Xiaojun
    Zhuang, Bohan
    [J]. COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 : 358 - 375