Spatio-temporal pattern discovery in sensor data: A multivalued decision systems approach

被引:2
|
作者
Mal-Sarkar, Sanchita [1 ]
Sikder, Iftikhar U. [2 ]
Konangi, Vijay K. [1 ]
机构
[1] Cleveland State Univ, Elect Engn & Comp Sci, Cleveland, OH 44115 USA
[2] Cleveland State Univ, Informat Syst, Cleveland, OH 44115 USA
关键词
Spatio-temporal pattern; Multi-valued decision system; EFFICIENT CLUSTERING-ALGORITHM; ROUGH SET; UNCERTAINTY; RULES;
D O I
10.1016/j.knosys.2016.06.032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Discovering novel and interesting spatio-temporal patterns in sensor data is a major challenge in many scientific domains. Such data are often continuous, unbounded, and associated with high speed, time variant distribution with local and spatial trends. This paper presents a formalism that includes an extension of classical rough set inference mechanism to reason with space-time variant data streams. The concept of multivalued decision systems has been used to account for multiple patterns in a single time window or snapshot. Such patterns or templates are incorporated in rough set-based rule induction process. A framework for sensor data integration is illustrated by using a space-time clustering mechanism followed by the generation of templates and local rules from such clusters. The multivalued decision system allows mining complex multiple patterns instead of a single value in a given template without requiring complex feature transformation. It also allows us to quantify and estimate potential data compression and associated uncertainty parameters. Finally, the results are validated and compared with other related algorithms. In general, the framework will help us understand the underlying reasoning mechanism about the "part and whole" or spatio-temporal mereological relationship without sacrificing the semantics of the sensor data attributes. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:137 / 146
页数:10
相关论文
共 50 条
  • [1] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [2] Cascading Spatio-Temporal Pattern Discovery
    Mohan, Pradeep
    Shekhar, Shashi
    Shine, James A.
    Rogers, James P.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2012, 24 (11) : 1977 - 1992
  • [3] A design for knowledge discovery decision support systems (KD-DSS) with spatio-temporal data
    Kozal, DG
    Culver, MG
    Harms, SK
    [J]. INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 2, PROCEEDINGS, 2004, : 172 - 174
  • [4] Hierarchical Spatio-Temporal Pattern Discovery and Predictive Modeling
    Yu, Chung-Hsien
    Ding, Wei
    Morabito, Melissa
    Chen, Ping
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (04) : 979 - 993
  • [5] Causal Structure Discovery for Spatio-temporal Data
    Chu, Victor W.
    Wong, Raymond K.
    Liu, Wei
    Chen, Fang
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2014, PT I, 2014, 8421 : 236 - 250
  • [6] An approach to evaluating motion pattern detection techniques in spatio-temporal data
    Laube, Patrick
    Purves, Ross S.
    [J]. COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2006, 30 (03) : 347 - 374
  • [7] Pattern formations in chaotic spatio-temporal systems
    Zhang, Y
    Wang, SH
    Xiao, JH
    Cerdeira, HA
    Chen, S
    Hu, G
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2005, 64 (06): : 927 - 937
  • [8] Pattern formations in chaotic spatio-temporal systems
    Ying Zhang
    Shihong Wang
    Jinhua Xiao
    Hilda A. Cerdeira
    S. Chen
    Gang Hu
    [J]. Pramana, 2005, 64 : 927 - 937
  • [9] Spatio-temporal sensor data processing techniques
    [J]. Kim, Jeong-Joon (jjkim@kpu.ac.kr), 1600, Korea Information Processing Society (13):
  • [10] A Spatio-Temporal Approach to the Discovery of Online Social Trends
    Achrekar, Harshavardhan
    Fang, Zheng
    Li, You
    Chen, Cindy
    Liu, Benyuan
    Wang, Jie
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, 2011, 6831 : 510 - 524